Line Defects in Quasicrystals
The six-dimensional framework of the integral formalism for line defects (straight dislocations and line forces) in anisotropic elasticity has been extended to a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mro...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Crystals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4352/15/3/275 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850089898050060288 |
|---|---|
| author | Markus Lazar |
| author_facet | Markus Lazar |
| author_sort | Markus Lazar |
| collection | DOAJ |
| description | The six-dimensional framework of the integral formalism for line defects (straight dislocations and line forces) in anisotropic elasticity has been extended to a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>n</mi></mrow></semantics></math></inline-formula>-dimensional integral formalism for line defects in quasicrystals (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn></mrow></semantics></math></inline-formula> for one-, two-, and three-dimensional quasicrystals) including phonon and phason fields. The elastic fields of a line defect in a quasicrystal have a surprisingly simple and compact form in the integral formalism of quasicrystals. |
| format | Article |
| id | doaj-art-db2f3d6eac54471bb1c9f04dbabdcdd5 |
| institution | DOAJ |
| issn | 2073-4352 |
| language | English |
| publishDate | 2025-03-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Crystals |
| spelling | doaj-art-db2f3d6eac54471bb1c9f04dbabdcdd52025-08-20T02:42:40ZengMDPI AGCrystals2073-43522025-03-0115327510.3390/cryst15030275Line Defects in QuasicrystalsMarkus Lazar0Institute for Mechanics, Technical University of Darmstadt, D-64287 Darmstadt, GermanyThe six-dimensional framework of the integral formalism for line defects (straight dislocations and line forces) in anisotropic elasticity has been extended to a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>n</mi></mrow></semantics></math></inline-formula>-dimensional integral formalism for line defects in quasicrystals (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn></mrow></semantics></math></inline-formula> for one-, two-, and three-dimensional quasicrystals) including phonon and phason fields. The elastic fields of a line defect in a quasicrystal have a surprisingly simple and compact form in the integral formalism of quasicrystals.https://www.mdpi.com/2073-4352/15/3/275line defectsdislocationsline forcesanisotropic elasticityintegral formalismStroh formalism |
| spellingShingle | Markus Lazar Line Defects in Quasicrystals Crystals line defects dislocations line forces anisotropic elasticity integral formalism Stroh formalism |
| title | Line Defects in Quasicrystals |
| title_full | Line Defects in Quasicrystals |
| title_fullStr | Line Defects in Quasicrystals |
| title_full_unstemmed | Line Defects in Quasicrystals |
| title_short | Line Defects in Quasicrystals |
| title_sort | line defects in quasicrystals |
| topic | line defects dislocations line forces anisotropic elasticity integral formalism Stroh formalism |
| url | https://www.mdpi.com/2073-4352/15/3/275 |
| work_keys_str_mv | AT markuslazar linedefectsinquasicrystals |