Line Defects in Quasicrystals

The six-dimensional framework of the integral formalism for line defects (straight dislocations and line forces) in anisotropic elasticity has been extended to a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mro...

Full description

Saved in:
Bibliographic Details
Main Author: Markus Lazar
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/15/3/275
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850089898050060288
author Markus Lazar
author_facet Markus Lazar
author_sort Markus Lazar
collection DOAJ
description The six-dimensional framework of the integral formalism for line defects (straight dislocations and line forces) in anisotropic elasticity has been extended to a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>n</mi></mrow></semantics></math></inline-formula>-dimensional integral formalism for line defects in quasicrystals (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn></mrow></semantics></math></inline-formula> for one-, two-, and three-dimensional quasicrystals) including phonon and phason fields. The elastic fields of a line defect in a quasicrystal have a surprisingly simple and compact form in the integral formalism of quasicrystals.
format Article
id doaj-art-db2f3d6eac54471bb1c9f04dbabdcdd5
institution DOAJ
issn 2073-4352
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj-art-db2f3d6eac54471bb1c9f04dbabdcdd52025-08-20T02:42:40ZengMDPI AGCrystals2073-43522025-03-0115327510.3390/cryst15030275Line Defects in QuasicrystalsMarkus Lazar0Institute for Mechanics, Technical University of Darmstadt, D-64287 Darmstadt, GermanyThe six-dimensional framework of the integral formalism for line defects (straight dislocations and line forces) in anisotropic elasticity has been extended to a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>n</mi></mrow></semantics></math></inline-formula>-dimensional integral formalism for line defects in quasicrystals (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn></mrow></semantics></math></inline-formula> for one-, two-, and three-dimensional quasicrystals) including phonon and phason fields. The elastic fields of a line defect in a quasicrystal have a surprisingly simple and compact form in the integral formalism of quasicrystals.https://www.mdpi.com/2073-4352/15/3/275line defectsdislocationsline forcesanisotropic elasticityintegral formalismStroh formalism
spellingShingle Markus Lazar
Line Defects in Quasicrystals
Crystals
line defects
dislocations
line forces
anisotropic elasticity
integral formalism
Stroh formalism
title Line Defects in Quasicrystals
title_full Line Defects in Quasicrystals
title_fullStr Line Defects in Quasicrystals
title_full_unstemmed Line Defects in Quasicrystals
title_short Line Defects in Quasicrystals
title_sort line defects in quasicrystals
topic line defects
dislocations
line forces
anisotropic elasticity
integral formalism
Stroh formalism
url https://www.mdpi.com/2073-4352/15/3/275
work_keys_str_mv AT markuslazar linedefectsinquasicrystals