Fault Diagnosis of Industrial Process Based on FDKICA-PCA
Because the dynamic characteristics of autocorrelation and lag correlation in production process are neglected in fault diagnosis,Kernel Independent Component AnalysisPrincipal Component Analysis (KICAPCA) is very poor in detecting small and gradual faults because of lacking available variable con...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | zho |
| Published: |
Harbin University of Science and Technology Publications
2018-12-01
|
| Series: | Journal of Harbin University of Science and Technology |
| Subjects: | |
| Online Access: | https://hlgxb.hrbust.edu.cn/#/digest?ArticleID=1615 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Because the dynamic characteristics of autocorrelation and lag correlation in production process are neglected in fault diagnosis,Kernel Independent Component AnalysisPrincipal Component Analysis (KICAPCA) is very poor in detecting small and gradual faults because of lacking available variable contribution analysis.In this paper, a dynamic kernel independent component analysis (KICAPCA) fault diagnosis method based on wavelet packet filtering is proposed.This method integrates wavelet packet filtering theory and AR model prediction data characteristics into KICAPCA to extract the feature information of process variable autocorrelation and lagrelated .In this paper, KICAPCA algorithm is used to extract the independent components and principal components of process variables to determine the control limits of three monitoring indicators T2, SPE,I2.Nonlinear contribution graph is used for fault diagnosis, and the advantage of FDKICAPCA method is verified by simulation results of Tennessee process. |
|---|---|
| ISSN: | 1007-2683 |