A Review of Fractional-Order Chaotic Systems of Memristive Neural Networks

At the end of the 20th century, the rapid development of brain-like dynamics was attributed to the excellent modeling of numerous neurons and neural systems, which effectively simulated biological behaviors observed in the human brain. With the continuous advancement of research, memristive neural n...

Full description

Saved in:
Bibliographic Details
Main Authors: Chunhua Wang, Yufei Li, Gang Yang, Quanli Deng
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/10/1600
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:At the end of the 20th century, the rapid development of brain-like dynamics was attributed to the excellent modeling of numerous neurons and neural systems, which effectively simulated biological behaviors observed in the human brain. With the continuous advancement of research, memristive neural networks (MNNs) have been extensively studied. In recent years, the exploration of fractional-order MNNs (FMNNs) has attracted research interest, leading to the discovery of the system’s dynamical phenomena, including transient chaos, hyperchaos, multi-stability, and the coexistence of attractors. To facilitate comparative research and learning, a review of the newly proposed fractional-order chaotic system models in recent years is urgently needed. In this review, we first introduce the basic theoretical knowledge of chaotic dynamics, artificial neural networks, fractional order, and memristors. Then, we mathematically describe the fractional-order systems and detail the highly regarded FMNNs in recent years, making comparative discussions and studies. Finally, we discuss the application of these models across diverse domains and propose thought-provoking questions and future research directions.
ISSN:2227-7390