An Orlicz-Besov Poincaré Inequality via John Domains
Denote by B˙⁎α,ϕ(Ω) the intrinsic Orlicz-Besov space, where α∈R, ϕ is a Young function, and Ω⊂Rn is a domain. For α∈(-n,0) and optimal ϕ, via John domains, we establish criteria for bounded domains Ω⊂Rn supporting an Orlicz-Besov Poincaré inequality. ‖u-uΩ‖Ln/|α|(Ω)≤C‖u‖B˙⁎α,ϕ(Ω) ∀u∈B˙⁎α,ϕ(Ω). This...
Saved in:
Main Author: | Hongyan Sun |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2019/5234507 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Characterizations of Orlicz-Sobolev Spaces by Means of Generalized Orlicz-Poincaré Inequalities
by: Toni Heikkinen
Published: (2012-01-01) -
The Functional Orlicz Brunn-Minkowski Inequality for q-Capacity
by: Wei Wang, et al.
Published: (2020-01-01) -
Ar (λ)-weighted Caccioppoli-type and Poincaré-type inequalities for A-harmonic tensors
by: Bing Liu
Published: (2002-01-01) -
Besov-Schatten Spaces
by: A. N. Marcoci, et al.
Published: (2012-01-01) -
Extension of the best approximation operator in Orlicz spaces and weak-type inequalities
by: Sergio Favier, et al.
Published: (2001-01-01)