3D Network Structural Poly (Aryl Ether Ketone)-Polybenzimidazole Polymer for High-Temperature Proton Exchange Membrane Fuel Cells

Poor mechanical property is a critical problem for phosphoric acid-doped high-temperature proton exchange membranes (HT-PEMs). In order to address this concern, in this work, a 3D network structural poly (aryl ether ketone)-polybenzimidazole (PAEK-cr-PBI) polymer electrolyte membrane was successfull...

Full description

Saved in:
Bibliographic Details
Main Authors: Junqiao Jiang, Erli Qu, Min Xiao, Dongmei Han, Shuanjin Wang, Yuezhong Meng
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Polymer Technology
Online Access:http://dx.doi.org/10.1155/2020/4563860
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poor mechanical property is a critical problem for phosphoric acid-doped high-temperature proton exchange membranes (HT-PEMs). In order to address this concern, in this work, a 3D network structural poly (aryl ether ketone)-polybenzimidazole (PAEK-cr-PBI) polymer electrolyte membrane was successfully synthesized through crosslinking reaction between poly (aryl ether ketone) with the pendant carboxyl group (PAEK-COOH) and amino-terminated polybenzimidazole (PBI-4NH2). PAEK-COOH with a poly (aryl ether ketone) backbone endows superior thermal, mechanical, and chemical stability, while PBI-4NH2 serves as both a proton conductor and a crosslinker with basic imidazole groups to absorb phosphoric acid. Moreover, the composite membrane of PAEK-cr-PBI blended with linear PBI (PAEK-cr-PBI@PBI) was also prepared. Both membranes with a proper phosphoric acid (PA) uptake exhibit an excellent proton conductivity of around 50 mS cm-1 at 170°C, which is comparable to that of the well-documented PA-doped PBI membrane. Furthermore, the PA-doped PAEK-cr-PBI membrane shows superior mechanical properties of 17 MPa compared with common PA-doped PBI. Based upon these encouraging results, the as-synthesized PAEK-cr-PBI gives a highly practical promise for its application in high-temperature proton exchange membrane fuel cells (HT-PEMFCs).
ISSN:0730-6679
1098-2329