Modular representations of Loewy length two

Let G be a finite p-group, K a field of characteristic p, and J the radical of the group algebra K[G]. We study modular representations using some new results of the theory of extensions of modules. More precisely, we describe the K[G]-modules M such that J2M=0 and give some properties and isomorphi...

Full description

Saved in:
Bibliographic Details
Main Authors: M. E. Charkani, S. Bouhamidi
Format: Article
Language:English
Published: Wiley 2003-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171203210681
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553576797306880
author M. E. Charkani
S. Bouhamidi
author_facet M. E. Charkani
S. Bouhamidi
author_sort M. E. Charkani
collection DOAJ
description Let G be a finite p-group, K a field of characteristic p, and J the radical of the group algebra K[G]. We study modular representations using some new results of the theory of extensions of modules. More precisely, we describe the K[G]-modules M such that J2M=0 and give some properties and isomorphism invariants which allow us to compute the number of isomorphism classes of K[G]-modules M such that dimK(M)=μ(M)+1, where μ(M) is the minimum number of generators of the K[G]-module M. We also compute the number of isomorphism classes of indecomposable K[G]-modules M such that dimK(Rad(M))=1.
format Article
id doaj-art-dad62696016742a589114e45a0dee5ad
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2003-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-dad62696016742a589114e45a0dee5ad2025-02-03T05:53:42ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252003-01-012003704399440810.1155/S0161171203210681Modular representations of Loewy length twoM. E. Charkani0S. Bouhamidi1Department of Mathematics, Faculty of Sciences Dhar-Mahraz, University of Sidi Mohammed Ben Abdellah, Fes BP 1796, MoroccoDepartment of Mathematics, Faculty of Sciences Dhar-Mahraz, University of Sidi Mohammed Ben Abdellah, Fes BP 1796, MoroccoLet G be a finite p-group, K a field of characteristic p, and J the radical of the group algebra K[G]. We study modular representations using some new results of the theory of extensions of modules. More precisely, we describe the K[G]-modules M such that J2M=0 and give some properties and isomorphism invariants which allow us to compute the number of isomorphism classes of K[G]-modules M such that dimK(M)=μ(M)+1, where μ(M) is the minimum number of generators of the K[G]-module M. We also compute the number of isomorphism classes of indecomposable K[G]-modules M such that dimK(Rad(M))=1.http://dx.doi.org/10.1155/S0161171203210681
spellingShingle M. E. Charkani
S. Bouhamidi
Modular representations of Loewy length two
International Journal of Mathematics and Mathematical Sciences
title Modular representations of Loewy length two
title_full Modular representations of Loewy length two
title_fullStr Modular representations of Loewy length two
title_full_unstemmed Modular representations of Loewy length two
title_short Modular representations of Loewy length two
title_sort modular representations of loewy length two
url http://dx.doi.org/10.1155/S0161171203210681
work_keys_str_mv AT mecharkani modularrepresentationsofloewylengthtwo
AT sbouhamidi modularrepresentationsofloewylengthtwo