New Perspectives of Hermite–Hadamard–Mercer-Type Inequalities Associated with <i>ψ</i><sub><i>k</i></sub>-Raina’s Fractional Integrals for Differentiable Convex Functions
Starting from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-Raina’s fractional integrals (&...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Fractal and Fractional |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2504-3110/9/4/203 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Starting from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-Raina’s fractional integrals (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-RFIs), the study obtains a new generalization of the Hermite–Hadamard–Mercer (H-H-M) inequality. Several trapezoid-type inequalities are constructed for functions whose derivatives of orders 1 and 2, in absolute value, are convex and involve <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-RFIs. The results of the research are refinements of the Hermite–Hadamard (H-H) and H-H-M-type inequalities. For several types of fractional integrals—Riemann–Liouville (R-L), <i>k</i>-Riemann–Liouville (<i>k</i>-R-L), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Riemann–Liouville (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-R-L), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-Riemann–Liouville (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-R-L), Raina’s, <i>k</i>-Raina’s, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Raina’s fractional integrals (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-RFIs)—new inequalities of H-H and H-H-M-type are established, respectively. This article presents special cases of the main results and provides numerous examples with graphical illustrations to confirm the validity of the results. This study shows the efficiency of the findings with a couple of applications, taking into account the modified Bessel function and the q-digamma function. |
|---|---|
| ISSN: | 2504-3110 |