Rev-erb-α antagonism in alveolar macrophages protects against pneumococcal infection in elderly mice
Summary: Circadian rhythms control the diurnal nature of many physiological, metabolic, and immune processes. We hypothesized that age-related impairments in circadian rhythms are associated with high susceptibility to bacterial respiratory tract infections. Our data show that the time-of-day differ...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-02-01
|
Series: | Cell Reports |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211124725000440 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary: Circadian rhythms control the diurnal nature of many physiological, metabolic, and immune processes. We hypothesized that age-related impairments in circadian rhythms are associated with high susceptibility to bacterial respiratory tract infections. Our data show that the time-of-day difference in the control of Streptococcus pneumoniae infection is altered in elderly mice. A lung circadian transcriptome analysis revealed that aging alters the daily oscillations in the expression of a specific set of genes and that some pathways that are rhythmic in young-adult mice are non-rhythmic or time shifted in elderly mice. In particular, the circadian expression of the clock component Rev-erb-α and apelin/apelin receptor was altered in elderly mice. In young-adult mice, we discovered an interaction between Rev-erb-α and the apelinergic axis that controls host defenses against S. pneumoniae via alveolar macrophages. Pharmacological repression of Rev-erb-α in elderly mice resulted in greater resistance to pneumococcal infection. These data suggest the causative role of age-associated impairments in circadian rhythms on respiratory infections and have clinical relevance. |
---|---|
ISSN: | 2211-1247 |