Mikhlin-Type <i>H<sup>p</sup></i> Multiplier Theorem on the Heisenberg Group

The classical Fourier multiplier theorem by Mikhlin in Hardy spaces is extended to the Heisenberg group. The proof relies on the theories of atom and molecule functions and the property of special Hermite functions. The main result is a Mikhlin-type <inline-formula><math xmlns="http://...

Full description

Saved in:
Bibliographic Details
Main Authors: Jinsen Xiao, Jianxun He, Yingzhu Wu
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/11/745
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850267762353504256
author Jinsen Xiao
Jianxun He
Yingzhu Wu
author_facet Jinsen Xiao
Jianxun He
Yingzhu Wu
author_sort Jinsen Xiao
collection DOAJ
description The classical Fourier multiplier theorem by Mikhlin in Hardy spaces is extended to the Heisenberg group. The proof relies on the theories of atom and molecule functions and the property of special Hermite functions. The main result is a Mikhlin-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mi>p</mi></msup></semantics></math></inline-formula> multiplier theorem on the Heisenberg group. If an operator-valued function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></semantics></math></inline-formula> satisfies certain conditions, the right-multiplier operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>M</mi></msub></semantics></math></inline-formula> is bounded on the Hardy space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mi>p</mi></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">H</mi><mi>n</mi></msup><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> which is defined in terms of maximal functions, and elements can be decomposed into atoms or molecules. The paper also discusses the relationship with other results and open problems.
format Article
id doaj-art-da0203e4d21d4e8eaf80c5c4e2df207a
institution OA Journals
issn 2075-1680
language English
publishDate 2024-10-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-da0203e4d21d4e8eaf80c5c4e2df207a2025-08-20T01:53:40ZengMDPI AGAxioms2075-16802024-10-01131174510.3390/axioms13110745Mikhlin-Type <i>H<sup>p</sup></i> Multiplier Theorem on the Heisenberg GroupJinsen Xiao0Jianxun He1Yingzhu Wu2Department of Mathematics, Guangdong University of Petrochemical Technology, Maoming 525000, ChinaDepartment of Basic Course Teaching, Software Engineering Institute of Guangzhou, Guangzhou 510990, ChinaDepartment of Mathematics, Guangdong University of Petrochemical Technology, Maoming 525000, ChinaThe classical Fourier multiplier theorem by Mikhlin in Hardy spaces is extended to the Heisenberg group. The proof relies on the theories of atom and molecule functions and the property of special Hermite functions. The main result is a Mikhlin-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mi>p</mi></msup></semantics></math></inline-formula> multiplier theorem on the Heisenberg group. If an operator-valued function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></semantics></math></inline-formula> satisfies certain conditions, the right-multiplier operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>M</mi></msub></semantics></math></inline-formula> is bounded on the Hardy space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mi>p</mi></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">H</mi><mi>n</mi></msup><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> which is defined in terms of maximal functions, and elements can be decomposed into atoms or molecules. The paper also discusses the relationship with other results and open problems.https://www.mdpi.com/2075-1680/13/11/745multiplierHeisenberg groupHardy spaceFourier transform
spellingShingle Jinsen Xiao
Jianxun He
Yingzhu Wu
Mikhlin-Type <i>H<sup>p</sup></i> Multiplier Theorem on the Heisenberg Group
Axioms
multiplier
Heisenberg group
Hardy space
Fourier transform
title Mikhlin-Type <i>H<sup>p</sup></i> Multiplier Theorem on the Heisenberg Group
title_full Mikhlin-Type <i>H<sup>p</sup></i> Multiplier Theorem on the Heisenberg Group
title_fullStr Mikhlin-Type <i>H<sup>p</sup></i> Multiplier Theorem on the Heisenberg Group
title_full_unstemmed Mikhlin-Type <i>H<sup>p</sup></i> Multiplier Theorem on the Heisenberg Group
title_short Mikhlin-Type <i>H<sup>p</sup></i> Multiplier Theorem on the Heisenberg Group
title_sort mikhlin type i h sup p sup i multiplier theorem on the heisenberg group
topic multiplier
Heisenberg group
Hardy space
Fourier transform
url https://www.mdpi.com/2075-1680/13/11/745
work_keys_str_mv AT jinsenxiao mikhlintypeihsuppsupimultipliertheoremontheheisenberggroup
AT jianxunhe mikhlintypeihsuppsupimultipliertheoremontheheisenberggroup
AT yingzhuwu mikhlintypeihsuppsupimultipliertheoremontheheisenberggroup