Grids for Applications in High-Temperature High-Resolution Transmission Electron Microscopy

New TEM grids coated with ultrathin amorphous Al2O3 films have been developed using atomic layer deposition technique. The amorphous Al2O3 films can withstand temperatures over 600∘C in air and 900∘C in vacuum when the thickness of the Al2O3 film is 2 nm, and up to 1000∘C in air when the thickness i...

Full description

Saved in:
Bibliographic Details
Main Authors: Yucheng Lan, Hui Wang, Dezhi Wang, Gang Chen, Zhifeng Ren
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Journal of Nanotechnology
Online Access:http://dx.doi.org/10.1155/2010/279608
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:New TEM grids coated with ultrathin amorphous Al2O3 films have been developed using atomic layer deposition technique. The amorphous Al2O3 films can withstand temperatures over 600∘C in air and 900∘C in vacuum when the thickness of the Al2O3 film is 2 nm, and up to 1000∘C in air when the thickness is 25 nm, which makes heating TEM grids with nanoparticles up to 1000∘C in air and immediate TEM observation without interrupting the nanoparticles possible. Such coated TEM grids are very much desired for applications in high-temperature high-resolution transmission electron microscopy.
ISSN:1687-9503
1687-9511