Robust Model Predictive Control for Energy Management of Isolated Microgrids Based on Interval Prediction

With the integration of Renewable Energy Resources (RERs), the Day-Ahead (DA) scheduling for the optimal operation of the integrated Isolated Microgrids (IMGs) may not be economically optimal in real time due to the prediction errors of multiple uncertainty sources. To compensate for prediction erro...

Full description

Saved in:
Bibliographic Details
Main Authors: Huihui He, Shengjun Huang, Yajie Liu, Tao Zhang
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2021/2198846
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the integration of Renewable Energy Resources (RERs), the Day-Ahead (DA) scheduling for the optimal operation of the integrated Isolated Microgrids (IMGs) may not be economically optimal in real time due to the prediction errors of multiple uncertainty sources. To compensate for prediction error, this paper proposes a Robust Model Predictive Control (RMPC) based on an interval prediction approach to optimize the real-time operation of the IMGs, which diminishes the influence from prediction error. The rolling optimization model in RMPC is formulated into the robust model to schedule operation with the consideration of the price of robustness. In addition, an Online Learning (OL) method for interval prediction is utilized in RMPC to predict the future information of the uncertainties of RERs and load, thereby limiting the uncertainty. A case study demonstrates the effectiveness of the proposed with the better matching between demand and supply compared with the traditional Model Predictive Control (MPC) method and Hard Charging (HC) method.
ISSN:1026-0226
1607-887X