Classical orthogonal polynomials and Leverrier-Faddeev algorithm for the matrix pencils sE−A

In this contribution we present an extension of the Leverrier-Faddeev algorithm for the simultaneous computation of the determinant and the adjoint matrix B(s) of a pencil sE−A where E is a singular matrix but det⁡(sE−A)≢0. Using a previous result by the authors we express B(s) and det⁡(sE−A) in ter...

Full description

Saved in:
Bibliographic Details
Main Authors: Javier Hernández, Francisco Marcellán
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS/2006/74507
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548706507816960
author Javier Hernández
Francisco Marcellán
author_facet Javier Hernández
Francisco Marcellán
author_sort Javier Hernández
collection DOAJ
description In this contribution we present an extension of the Leverrier-Faddeev algorithm for the simultaneous computation of the determinant and the adjoint matrix B(s) of a pencil sE−A where E is a singular matrix but det⁡(sE−A)≢0. Using a previous result by the authors we express B(s) and det⁡(sE−A) in terms of classical orthogonal polynomials.
format Article
id doaj-art-d9a27501f8c3406cb1ea604f52fe3abe
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2006-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-d9a27501f8c3406cb1ea604f52fe3abe2025-02-03T06:13:15ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252006-01-01200610.1155/IJMMS/2006/7450774507Classical orthogonal polynomials and Leverrier-Faddeev algorithm for the matrix pencils sE−AJavier Hernández0Francisco Marcellán1Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés 28911, SpainDepartamento de Matemáticas, Universidad Carlos III de Madrid, Leganés 28911, SpainIn this contribution we present an extension of the Leverrier-Faddeev algorithm for the simultaneous computation of the determinant and the adjoint matrix B(s) of a pencil sE−A where E is a singular matrix but det⁡(sE−A)≢0. Using a previous result by the authors we express B(s) and det⁡(sE−A) in terms of classical orthogonal polynomials.http://dx.doi.org/10.1155/IJMMS/2006/74507
spellingShingle Javier Hernández
Francisco Marcellán
Classical orthogonal polynomials and Leverrier-Faddeev algorithm for the matrix pencils sE−A
International Journal of Mathematics and Mathematical Sciences
title Classical orthogonal polynomials and Leverrier-Faddeev algorithm for the matrix pencils sE−A
title_full Classical orthogonal polynomials and Leverrier-Faddeev algorithm for the matrix pencils sE−A
title_fullStr Classical orthogonal polynomials and Leverrier-Faddeev algorithm for the matrix pencils sE−A
title_full_unstemmed Classical orthogonal polynomials and Leverrier-Faddeev algorithm for the matrix pencils sE−A
title_short Classical orthogonal polynomials and Leverrier-Faddeev algorithm for the matrix pencils sE−A
title_sort classical orthogonal polynomials and leverrier faddeev algorithm for the matrix pencils se a
url http://dx.doi.org/10.1155/IJMMS/2006/74507
work_keys_str_mv AT javierhernandez classicalorthogonalpolynomialsandleverrierfaddeevalgorithmforthematrixpencilssea
AT franciscomarcellan classicalorthogonalpolynomialsandleverrierfaddeevalgorithmforthematrixpencilssea