Distance Measurement and Error Compensation of High-Speed Coaxial Rotor Blades Based on Coded Ultrasonic Ranging

Coaxial rotor helicopters have many advantages and have a wide range of civilian and military applications; however, there is a risk of blade collision between the upper and lower rotor blades, and the challenge still exists in balancing rotor parameters and flight control. In this paper, a blade ti...

Full description

Saved in:
Bibliographic Details
Main Authors: Yaohuan Lu, Shan Zhang, Wenchuan Hu, Zhen Qiu, Zurong Qiu, Yongqiang Qiu
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/16/1/61
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coaxial rotor helicopters have many advantages and have a wide range of civilian and military applications; however, there is a risk of blade collision between the upper and lower rotor blades, and the challenge still exists in balancing rotor parameters and flight control. In this paper, a blade tip distance measurement method based on coded ultrasonic ranging and phase triggering is proposed to tackle this measurement environment and expand the application of ultrasonic ranging in high-speed dynamic measurement. The time of flight (<i>Tof</i>) of coded ultrasonic ranging is calculated by the amplitude threshold improvement method and cross-correlation method, and the sound velocity is compensated by a proposed multi-factor compensation method. The static distance error of coded ranging with different codes are all within ±0.5 mm in the range of 10–1000 mm. The measurement error characteristics under different trigger phases and different rotational speeds are studied, and the error model is fitted by the back-propagation neural network method. After compensation, the vertical distance measurement errors are within ±2 mm in the range of 100–1000 mm under the condition that the rotational speed of the blade is up to 1020 RPM. It also provides a potential solution for other high-speed measurement problems.
ISSN:2072-666X