The Near-Ring of Lipschitz Functions on a Metric Space
This paper treats near-rings of zero-preserving Lipschitz functions on metric spaces that are also abelian groups, using pointwise addition of functions as addition and composition of functions as multiplication. We identify a condition on the metric ensuring that the set of all such Lipschitz funct...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2010-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2010/284875 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper treats near-rings of zero-preserving Lipschitz functions on metric spaces that are also abelian groups, using pointwise addition of functions as addition and composition of functions as multiplication. We identify a condition on the metric ensuring that the set of all such Lipschitz functions is a near-ring, and we investigate the complications that arise from the lack of left distributivity in the resulting right near-ring. We study the behavior of the set of invertible Lipschitz functions, and we initiate an investigation into the ideal structure of normed near-rings of Lipschitz functions. Examples are given to illustrate the results and to demonstrate the limits of the theory. |
---|---|
ISSN: | 0161-1712 1687-0425 |