Constructing an Isogenic 3D Human Nephrogenic Progenitor Cell Model Composed of Endothelial, Mesenchymal, and SIX2-Positive Renal Progenitor Cells
Urine has become the source of choice for noninvasive renal epithelial cells and renal stem cells which can be used for generating induced pluripotent stem cells. The aim of this study was to generate a 3D nephrogenic progenitor cell model composed of three distinct cell types—urine-derived SIX2-pos...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Stem Cells International |
Online Access: | http://dx.doi.org/10.1155/2019/3298432 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832559378909102080 |
---|---|
author | Lisa Nguyen Lucas-Sebastian Spitzhorn James Adjaye |
author_facet | Lisa Nguyen Lucas-Sebastian Spitzhorn James Adjaye |
author_sort | Lisa Nguyen |
collection | DOAJ |
description | Urine has become the source of choice for noninvasive renal epithelial cells and renal stem cells which can be used for generating induced pluripotent stem cells. The aim of this study was to generate a 3D nephrogenic progenitor cell model composed of three distinct cell types—urine-derived SIX2-positive renal progenitor cells, iPSC-derived mesenchymal stem cells, and iPSC-derived endothelial cells originating from the same individual. Characterization of the generated mesenchymal stem cells revealed plastic adherent growth and a trilineage differentiation potential to adipocytes, chondrocytes, and osteoblasts. Furthermore, these cells express the typical MSC markers CD73, CD90, and CD105. The induced endothelial cells express the endothelial cell surface marker CD31. Upon combination of urine-derived renal progenitor cells, induced mesenchymal stem cells, and induced endothelial cells at a set ratio, the cells self-condensed into three-dimensional nephrogenic progenitor cells which we refer to as 3D-NPCs. Immunofluorescence-based stainings of sectioned 3D-NPCs revealed cells expressing the renal progenitor cell markers (SIX2 and PAX8), podocyte markers (Nephrin and Podocin), the endothelial marker (CD31), and mesenchymal markers (Vimentin and PDGFR-β). These 3D-NPCs share kidney progenitor characteristics and thus the potential to differentiate into podocytes and proximal and distal tubules. As urine-derived renal progenitor cells can be easily obtained from cells shed into urine, the generation of 3D-NPCs directly from renal progenitor cells instead of pluripotent stem cells or kidney biopsies holds a great potential for the use in nephrotoxicity tests, drug screening, modelling nephrogenesis and diseases. |
format | Article |
id | doaj-art-d8f9e9f8ed0a4e7db6f748a3e515f8d9 |
institution | Kabale University |
issn | 1687-966X 1687-9678 |
language | English |
publishDate | 2019-01-01 |
publisher | Wiley |
record_format | Article |
series | Stem Cells International |
spelling | doaj-art-d8f9e9f8ed0a4e7db6f748a3e515f8d92025-02-03T01:30:16ZengWileyStem Cells International1687-966X1687-96782019-01-01201910.1155/2019/32984323298432Constructing an Isogenic 3D Human Nephrogenic Progenitor Cell Model Composed of Endothelial, Mesenchymal, and SIX2-Positive Renal Progenitor CellsLisa Nguyen0Lucas-Sebastian Spitzhorn1James Adjaye2Institute for Stem Cell Research and Regenerative Medicine, University Hospital Duesseldorf, 40225 Duesseldorf, GermanyInstitute for Stem Cell Research and Regenerative Medicine, University Hospital Duesseldorf, 40225 Duesseldorf, GermanyInstitute for Stem Cell Research and Regenerative Medicine, University Hospital Duesseldorf, 40225 Duesseldorf, GermanyUrine has become the source of choice for noninvasive renal epithelial cells and renal stem cells which can be used for generating induced pluripotent stem cells. The aim of this study was to generate a 3D nephrogenic progenitor cell model composed of three distinct cell types—urine-derived SIX2-positive renal progenitor cells, iPSC-derived mesenchymal stem cells, and iPSC-derived endothelial cells originating from the same individual. Characterization of the generated mesenchymal stem cells revealed plastic adherent growth and a trilineage differentiation potential to adipocytes, chondrocytes, and osteoblasts. Furthermore, these cells express the typical MSC markers CD73, CD90, and CD105. The induced endothelial cells express the endothelial cell surface marker CD31. Upon combination of urine-derived renal progenitor cells, induced mesenchymal stem cells, and induced endothelial cells at a set ratio, the cells self-condensed into three-dimensional nephrogenic progenitor cells which we refer to as 3D-NPCs. Immunofluorescence-based stainings of sectioned 3D-NPCs revealed cells expressing the renal progenitor cell markers (SIX2 and PAX8), podocyte markers (Nephrin and Podocin), the endothelial marker (CD31), and mesenchymal markers (Vimentin and PDGFR-β). These 3D-NPCs share kidney progenitor characteristics and thus the potential to differentiate into podocytes and proximal and distal tubules. As urine-derived renal progenitor cells can be easily obtained from cells shed into urine, the generation of 3D-NPCs directly from renal progenitor cells instead of pluripotent stem cells or kidney biopsies holds a great potential for the use in nephrotoxicity tests, drug screening, modelling nephrogenesis and diseases.http://dx.doi.org/10.1155/2019/3298432 |
spellingShingle | Lisa Nguyen Lucas-Sebastian Spitzhorn James Adjaye Constructing an Isogenic 3D Human Nephrogenic Progenitor Cell Model Composed of Endothelial, Mesenchymal, and SIX2-Positive Renal Progenitor Cells Stem Cells International |
title | Constructing an Isogenic 3D Human Nephrogenic Progenitor Cell Model Composed of Endothelial, Mesenchymal, and SIX2-Positive Renal Progenitor Cells |
title_full | Constructing an Isogenic 3D Human Nephrogenic Progenitor Cell Model Composed of Endothelial, Mesenchymal, and SIX2-Positive Renal Progenitor Cells |
title_fullStr | Constructing an Isogenic 3D Human Nephrogenic Progenitor Cell Model Composed of Endothelial, Mesenchymal, and SIX2-Positive Renal Progenitor Cells |
title_full_unstemmed | Constructing an Isogenic 3D Human Nephrogenic Progenitor Cell Model Composed of Endothelial, Mesenchymal, and SIX2-Positive Renal Progenitor Cells |
title_short | Constructing an Isogenic 3D Human Nephrogenic Progenitor Cell Model Composed of Endothelial, Mesenchymal, and SIX2-Positive Renal Progenitor Cells |
title_sort | constructing an isogenic 3d human nephrogenic progenitor cell model composed of endothelial mesenchymal and six2 positive renal progenitor cells |
url | http://dx.doi.org/10.1155/2019/3298432 |
work_keys_str_mv | AT lisanguyen constructinganisogenic3dhumannephrogenicprogenitorcellmodelcomposedofendothelialmesenchymalandsix2positiverenalprogenitorcells AT lucassebastianspitzhorn constructinganisogenic3dhumannephrogenicprogenitorcellmodelcomposedofendothelialmesenchymalandsix2positiverenalprogenitorcells AT jamesadjaye constructinganisogenic3dhumannephrogenicprogenitorcellmodelcomposedofendothelialmesenchymalandsix2positiverenalprogenitorcells |