A Novel Flip-Filtered Orthagonal Frequency Division Multiplexing-Based Visible Light Communication System: Peak-to-Average-Power Ratio Assessment and System Performance Improvement
Filtered orthogonal frequency division multiplexing (F-OFDM), employed in visible light communication (VLC) systems, has been considered a promising technique for overcoming OFDM’s large out-of-band emissions and thus reducing bandwidth efficiency. However, due to Hermitian symmetry (HS) imposition,...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Photonics |
Subjects: | |
Online Access: | https://www.mdpi.com/2304-6732/12/1/69 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Filtered orthogonal frequency division multiplexing (F-OFDM), employed in visible light communication (VLC) systems, has been considered a promising technique for overcoming OFDM’s large out-of-band emissions and thus reducing bandwidth efficiency. However, due to Hermitian symmetry (HS) imposition, a challenge in VLC involves increasing power consumption and doubling inverse fast Fourier transform IFFT/FFT length. This paper introduces the non-Hermitian symmetry (NHS) Flip-F-OFDM technique to enhance bandwidth efficiency, reduce the peak–average-power ratio (PAPR), and lower system complexity. Compared to the traditional HS-based Flip-F-OFDM method, the proposed method achieves around 50% reduced system complexity and prevents the PAPR from increasing. Therefore, the proposed method offers more resource-saving and power efficiency than traditional Flip-F-OFDM. Then, the proposed scheme is assessed with HS-free Flip-OFDM, asymmetrically clipped optical (ACO)-OFDM, and direct-current bias optical (DCO)-OFDM. Concerning bandwidth efficiency, the proposed method shows better spectral efficiency than HS-free Flip-OFDM, ACO-OFDM, and DCO-OFDM. |
---|---|
ISSN: | 2304-6732 |