A Novel Flip-Filtered Orthagonal Frequency Division Multiplexing-Based Visible Light Communication System: Peak-to-Average-Power Ratio Assessment and System Performance Improvement

Filtered orthogonal frequency division multiplexing (F-OFDM), employed in visible light communication (VLC) systems, has been considered a promising technique for overcoming OFDM’s large out-of-band emissions and thus reducing bandwidth efficiency. However, due to Hermitian symmetry (HS) imposition,...

Full description

Saved in:
Bibliographic Details
Main Authors: Hayder S. R. Hujijo, Muhammad Ilyas
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/12/1/69
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Filtered orthogonal frequency division multiplexing (F-OFDM), employed in visible light communication (VLC) systems, has been considered a promising technique for overcoming OFDM’s large out-of-band emissions and thus reducing bandwidth efficiency. However, due to Hermitian symmetry (HS) imposition, a challenge in VLC involves increasing power consumption and doubling inverse fast Fourier transform IFFT/FFT length. This paper introduces the non-Hermitian symmetry (NHS) Flip-F-OFDM technique to enhance bandwidth efficiency, reduce the peak–average-power ratio (PAPR), and lower system complexity. Compared to the traditional HS-based Flip-F-OFDM method, the proposed method achieves around 50% reduced system complexity and prevents the PAPR from increasing. Therefore, the proposed method offers more resource-saving and power efficiency than traditional Flip-F-OFDM. Then, the proposed scheme is assessed with HS-free Flip-OFDM, asymmetrically clipped optical (ACO)-OFDM, and direct-current bias optical (DCO)-OFDM. Concerning bandwidth efficiency, the proposed method shows better spectral efficiency than HS-free Flip-OFDM, ACO-OFDM, and DCO-OFDM.
ISSN:2304-6732