Inequalities for the Minimum Eigenvalue of Doubly Strictly Diagonally Dominant M-Matrices
Let A be a doubly strictly diagonally dominant M-matrix. Inequalities on upper and lower bounds for the entries of the inverse of A are given. And some new inequalities on the lower bound for the minimal eigenvalue of A and the corresponding eigenvector are presented to establish an upper bound for...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | Journal of Applied Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2014/535716 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Let A be a doubly strictly diagonally dominant M-matrix. Inequalities on upper and lower bounds for the entries of the inverse of A are given. And some new inequalities on the lower bound for the minimal eigenvalue of A and the corresponding eigenvector are presented to establish an upper bound for the L1-norm of the solution x(t) for the linear differential system dx/dt=-Ax(t), x(0)=x0>0. |
|---|---|
| ISSN: | 1110-757X 1687-0042 |