A Hubble Constant Determination Through Quasar Time Delays and Type Ia Supernovae

This paper presents a new model-independent constraint on the Hubble constant (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>0</mn></msub></semantics><...

Full description

Saved in:
Bibliographic Details
Main Author: Leonardo R. Colaço
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/11/3/89
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a new model-independent constraint on the Hubble constant (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>0</mn></msub></semantics></math></inline-formula>) by anchoring relative distances from Type Ia supernovae (SNe Ia) observations to absolute distance measurements from time-delay strong Gravitational Lensing (SGL) systems. The approach only uses the validity of the cosmic distance duality relation (CDDR) to derive constraints on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>0</mn></msub></semantics></math></inline-formula>. By using Gaussian Process (GP) regression to reconstruct the unanchored luminosity distance from the Pantheon+ compilation to match the time-delay angular diameter distance at the redshift of the lenses, one yields a value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mn>0</mn></msub><mo>=</mo><mn>75.57</mn><mo>±</mo><mn>4.415</mn></mrow></semantics></math></inline-formula> km/s/Mpc at a 68% confidence level. The result aligns well with the local estimate from Cepheid variables within the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>σ</mi></mrow></semantics></math></inline-formula> confidence region, indicating consistency with late-universe probes.
ISSN:2218-1997