Crust and Upper Mantle Structure of Mars Determined from Surface Wave Analysis
The crust and upper mantle structure of Mars is determined in the depth range of 0 to 100 km, by means of dispersion analysis and its inversion, which is performed for the surface waves present in the traces of the seismic event: S1094b. From these traces, Love and Rayleigh waves are measured in the...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/9/4732 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The crust and upper mantle structure of Mars is determined in the depth range of 0 to 100 km, by means of dispersion analysis and its inversion, which is performed for the surface waves present in the traces of the seismic event: S1094b. From these traces, Love and Rayleigh waves are measured in the period range of 4 to 40 s. This dispersion was calculated with a combination of digital filtering techniques, and later was inverted to obtain both models: isotropic (from 0 to 100 km depth) and anisotropic (from 0 to 15 km depth), which were calculated considering the hypothesis of the surface wave propagation in slightly anisotropic media. The seismic anisotropy determined from 0 to 5 km depth (7% of S-velocity variation and ξ ~ 1.1) could be associated with the presence of sediments or lava-flow layering, and wide damage zones surrounding the long-term fault networks. For greater depths, the observed anisotropy (17% of S-velocity variation and ξ ~ 1.4) could be due to the possible presence of volcanic materials and/or the layering of lava flows. Another cause for this anisotropy could be the presence of layered intrusions due to a single or multiple impacts, which could cause internal layering within the crust. Finally, the Moho depth is determined at 50 km as a gradual transition from crust to mantle S-velocities, through an intermediate value (3.90 km/s) determined from 50 to 60 km-depth. |
|---|---|
| ISSN: | 2076-3417 |