The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space
In the paper, we consider the regularity of the weak solutions for the incompressible 3D Navier–Stokes (N–S) equations. Our main result is the double-logarithmic regularity criterion of pressure for the 3D Navier–Stokes equations in the Besov space. ∫0TπB˙∞,∞−3/qp/e+lne+πB˙∞,∞−3/qlne+lne+πB˙∞,∞−3/qd...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2024-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2024/2778502 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832542981959188480 |
---|---|
author | Min Liu Juan Song Tian-Li Li |
author_facet | Min Liu Juan Song Tian-Li Li |
author_sort | Min Liu |
collection | DOAJ |
description | In the paper, we consider the regularity of the weak solutions for the incompressible 3D Navier–Stokes (N–S) equations. Our main result is the double-logarithmic regularity criterion of pressure for the 3D Navier–Stokes equations in the Besov space. ∫0TπB˙∞,∞−3/qp/e+lne+πB˙∞,∞−3/qlne+lne+πB˙∞,∞−3/qdt<∞, 2/q+3/q=2,3≤q≤∞. Our results extend and generalize previous works. |
format | Article |
id | doaj-art-d7b37e5302ba4f5ba01235d6aa3f2670 |
institution | Kabale University |
issn | 2314-4785 |
language | English |
publishDate | 2024-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Mathematics |
spelling | doaj-art-d7b37e5302ba4f5ba01235d6aa3f26702025-02-03T12:01:07ZengWileyJournal of Mathematics2314-47852024-01-01202410.1155/2024/2778502The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov SpaceMin Liu0Juan Song1Tian-Li Li2Department of Basic EducationDepartment of Basic EducationDepartment of Basic EducationIn the paper, we consider the regularity of the weak solutions for the incompressible 3D Navier–Stokes (N–S) equations. Our main result is the double-logarithmic regularity criterion of pressure for the 3D Navier–Stokes equations in the Besov space. ∫0TπB˙∞,∞−3/qp/e+lne+πB˙∞,∞−3/qlne+lne+πB˙∞,∞−3/qdt<∞, 2/q+3/q=2,3≤q≤∞. Our results extend and generalize previous works.http://dx.doi.org/10.1155/2024/2778502 |
spellingShingle | Min Liu Juan Song Tian-Li Li The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space Journal of Mathematics |
title | The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space |
title_full | The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space |
title_fullStr | The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space |
title_full_unstemmed | The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space |
title_short | The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space |
title_sort | double logarithmic regularity criterion of pressure for the 3d navier stokes equations in the besov space |
url | http://dx.doi.org/10.1155/2024/2778502 |
work_keys_str_mv | AT minliu thedoublelogarithmicregularitycriterionofpressureforthe3dnavierstokesequationsinthebesovspace AT juansong thedoublelogarithmicregularitycriterionofpressureforthe3dnavierstokesequationsinthebesovspace AT tianlili thedoublelogarithmicregularitycriterionofpressureforthe3dnavierstokesequationsinthebesovspace AT minliu doublelogarithmicregularitycriterionofpressureforthe3dnavierstokesequationsinthebesovspace AT juansong doublelogarithmicregularitycriterionofpressureforthe3dnavierstokesequationsinthebesovspace AT tianlili doublelogarithmicregularitycriterionofpressureforthe3dnavierstokesequationsinthebesovspace |