The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space

In the paper, we consider the regularity of the weak solutions for the incompressible 3D Navier–Stokes (N–S) equations. Our main result is the double-logarithmic regularity criterion of pressure for the 3D Navier–Stokes equations in the Besov space. ∫0TπB˙∞,∞−3/qp/e+lne+πB˙∞,∞−3/qlne+lne+πB˙∞,∞−3/qd...

Full description

Saved in:
Bibliographic Details
Main Authors: Min Liu, Juan Song, Tian-Li Li
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2024/2778502
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832542981959188480
author Min Liu
Juan Song
Tian-Li Li
author_facet Min Liu
Juan Song
Tian-Li Li
author_sort Min Liu
collection DOAJ
description In the paper, we consider the regularity of the weak solutions for the incompressible 3D Navier–Stokes (N–S) equations. Our main result is the double-logarithmic regularity criterion of pressure for the 3D Navier–Stokes equations in the Besov space. ∫0TπB˙∞,∞−3/qp/e+lne+πB˙∞,∞−3/qlne+lne+πB˙∞,∞−3/qdt<∞, 2/q+3/q=2,3≤q≤∞. Our results extend and generalize previous works.
format Article
id doaj-art-d7b37e5302ba4f5ba01235d6aa3f2670
institution Kabale University
issn 2314-4785
language English
publishDate 2024-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-d7b37e5302ba4f5ba01235d6aa3f26702025-02-03T12:01:07ZengWileyJournal of Mathematics2314-47852024-01-01202410.1155/2024/2778502The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov SpaceMin Liu0Juan Song1Tian-Li Li2Department of Basic EducationDepartment of Basic EducationDepartment of Basic EducationIn the paper, we consider the regularity of the weak solutions for the incompressible 3D Navier–Stokes (N–S) equations. Our main result is the double-logarithmic regularity criterion of pressure for the 3D Navier–Stokes equations in the Besov space. ∫0TπB˙∞,∞−3/qp/e+lne+πB˙∞,∞−3/qlne+lne+πB˙∞,∞−3/qdt<∞, 2/q+3/q=2,3≤q≤∞. Our results extend and generalize previous works.http://dx.doi.org/10.1155/2024/2778502
spellingShingle Min Liu
Juan Song
Tian-Li Li
The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space
Journal of Mathematics
title The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space
title_full The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space
title_fullStr The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space
title_full_unstemmed The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space
title_short The Double-Logarithmic Regularity Criterion of Pressure for the 3D Navier–Stokes Equations in the Besov Space
title_sort double logarithmic regularity criterion of pressure for the 3d navier stokes equations in the besov space
url http://dx.doi.org/10.1155/2024/2778502
work_keys_str_mv AT minliu thedoublelogarithmicregularitycriterionofpressureforthe3dnavierstokesequationsinthebesovspace
AT juansong thedoublelogarithmicregularitycriterionofpressureforthe3dnavierstokesequationsinthebesovspace
AT tianlili thedoublelogarithmicregularitycriterionofpressureforthe3dnavierstokesequationsinthebesovspace
AT minliu doublelogarithmicregularitycriterionofpressureforthe3dnavierstokesequationsinthebesovspace
AT juansong doublelogarithmicregularitycriterionofpressureforthe3dnavierstokesequationsinthebesovspace
AT tianlili doublelogarithmicregularitycriterionofpressureforthe3dnavierstokesequationsinthebesovspace