On the Baire Generic Validity of the t-Multifractal Formalism in Besov and Sobolev Spaces

The t-multifractal formalism is a formula introduced by Jaffard and Mélot in order to deduce the t-spectrum of a function f from the knowledge of the (p,t)-oscillation exponent of f. The t-spectrum is the Hausdorff dimension of the set of points where f has a given value of pointwise Lt regularity....

Full description

Saved in:
Bibliographic Details
Main Authors: Moez Ben Abid, Mourad Ben Slimane, Ines Ben Omrane, Borhen Halouani
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2019/4358261
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832549126568411136
author Moez Ben Abid
Mourad Ben Slimane
Ines Ben Omrane
Borhen Halouani
author_facet Moez Ben Abid
Mourad Ben Slimane
Ines Ben Omrane
Borhen Halouani
author_sort Moez Ben Abid
collection DOAJ
description The t-multifractal formalism is a formula introduced by Jaffard and Mélot in order to deduce the t-spectrum of a function f from the knowledge of the (p,t)-oscillation exponent of f. The t-spectrum is the Hausdorff dimension of the set of points where f has a given value of pointwise Lt regularity. The (p,t)-oscillation exponent is measured by determining to which oscillation spaces Op,ts (defined in terms of wavelet coefficients) f belongs. In this paper, we first prove embeddings between oscillation and Besov-Sobolev spaces. We deduce a general lower bound for the (p,t)-oscillation exponent. We then show that this lower bound is actually equality generically, in the sense of Baire’s categories, in a given Sobolev or Besov space. We finally investigate the Baire generic validity of the t-multifractal formalism.
format Article
id doaj-art-d7685fd3b8724528860bacdb7d13d987
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2019-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-d7685fd3b8724528860bacdb7d13d9872025-02-03T06:12:16ZengWileyJournal of Function Spaces2314-88962314-88882019-01-01201910.1155/2019/43582614358261On the Baire Generic Validity of the t-Multifractal Formalism in Besov and Sobolev SpacesMoez Ben Abid0Mourad Ben Slimane1Ines Ben Omrane2Borhen Halouani3Université de Sousse, Ecole Supérieure des Sciences et de la Technologie de Hammam Sousse, Sousse, TunisiaKing Saud University, Department of Mathematics, College of Science, P.O. Box 2455, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi ArabiaKing Saud University, Department of Mathematics, College of Science, P.O. Box 2455, Riyadh 11451, Saudi ArabiaThe t-multifractal formalism is a formula introduced by Jaffard and Mélot in order to deduce the t-spectrum of a function f from the knowledge of the (p,t)-oscillation exponent of f. The t-spectrum is the Hausdorff dimension of the set of points where f has a given value of pointwise Lt regularity. The (p,t)-oscillation exponent is measured by determining to which oscillation spaces Op,ts (defined in terms of wavelet coefficients) f belongs. In this paper, we first prove embeddings between oscillation and Besov-Sobolev spaces. We deduce a general lower bound for the (p,t)-oscillation exponent. We then show that this lower bound is actually equality generically, in the sense of Baire’s categories, in a given Sobolev or Besov space. We finally investigate the Baire generic validity of the t-multifractal formalism.http://dx.doi.org/10.1155/2019/4358261
spellingShingle Moez Ben Abid
Mourad Ben Slimane
Ines Ben Omrane
Borhen Halouani
On the Baire Generic Validity of the t-Multifractal Formalism in Besov and Sobolev Spaces
Journal of Function Spaces
title On the Baire Generic Validity of the t-Multifractal Formalism in Besov and Sobolev Spaces
title_full On the Baire Generic Validity of the t-Multifractal Formalism in Besov and Sobolev Spaces
title_fullStr On the Baire Generic Validity of the t-Multifractal Formalism in Besov and Sobolev Spaces
title_full_unstemmed On the Baire Generic Validity of the t-Multifractal Formalism in Besov and Sobolev Spaces
title_short On the Baire Generic Validity of the t-Multifractal Formalism in Besov and Sobolev Spaces
title_sort on the baire generic validity of the t multifractal formalism in besov and sobolev spaces
url http://dx.doi.org/10.1155/2019/4358261
work_keys_str_mv AT moezbenabid onthebairegenericvalidityofthetmultifractalformalisminbesovandsobolevspaces
AT mouradbenslimane onthebairegenericvalidityofthetmultifractalformalisminbesovandsobolevspaces
AT inesbenomrane onthebairegenericvalidityofthetmultifractalformalisminbesovandsobolevspaces
AT borhenhalouani onthebairegenericvalidityofthetmultifractalformalisminbesovandsobolevspaces