Numerical Scheme for Finding Roots of Interval-Valued Fuzzy Nonlinear Equation with Application in Optimization
In this research article, we propose efficient numerical iterative methods for estimating roots of interval-valued trapezoidal fuzzy nonlinear equations. Convergence analysis proves that the order of convergence of numerical schemes is 3. Some real-life applications are considered from optimization...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2021/6369129 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this research article, we propose efficient numerical iterative methods for estimating roots of interval-valued trapezoidal fuzzy nonlinear equations. Convergence analysis proves that the order of convergence of numerical schemes is 3. Some real-life applications are considered from optimization as numerical test problems which contain interval-valued trapezoidal fuzzy quantities in parametric form. Numerical illustrations are given to show the dominance efficiency of the newly constructed iterative schemes as compared to existing methods in literature. |
---|---|
ISSN: | 2314-8896 2314-8888 |