Hedgehog Pathway Inhibition Hampers Sphere and Holoclone Formation in Rhabdomyosarcoma

Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and can be divided into two main subtypes: embryonal (eRMS) and alveolar (aRMS). Among the cellular heterogeneity of tumors, the existence of a small fraction of cells called cancer stem cells (CSC), thought to be resp...

Full description

Saved in:
Bibliographic Details
Main Authors: Ana Almazán-Moga, Patricia Zarzosa, Isaac Vidal, Carla Molist, Irina Giralt, Natalia Navarro, Aroa Soriano, Miguel F. Segura, Arantza Alfranca, Javier Garcia-Castro, José Sánchez de Toledo, Josep Roma, Soledad Gallego
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Stem Cells International
Online Access:http://dx.doi.org/10.1155/2017/7507380
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and can be divided into two main subtypes: embryonal (eRMS) and alveolar (aRMS). Among the cellular heterogeneity of tumors, the existence of a small fraction of cells called cancer stem cells (CSC), thought to be responsible for the onset and propagation of cancer, has been demonstrated in some neoplasia. Although the existence of CSC has been reported for eRMS, their existence in aRMS, the most malignant subtype, has not been demonstrated to date. Given the lack of suitable markers to identify this subpopulation in aRMS, we used cancer stem cell-enriched supracellular structures (spheres and holoclones) to study this subpopulation. This strategy allowed us to demonstrate the capacity of both aRMS and eRMS cells to form these structures and retain self-renewal capacity. Furthermore, cells contained in spheres and holoclones showed significant Hedgehog pathway induction, the inhibition of which (pharmacologic or genetic) impairs the formation of both holoclones and spheres. Our findings point to a crucial role of this pathway in the maintenance of these structures and suggest that Hedgehog pathway targeting in CSC may have great potential in preventing local relapses and metastases.
ISSN:1687-966X
1687-9678