Chronic lung lesions in COVID-19 survivors: predictive clinical model
Objective This study aimed to propose a simple, accessible and low-cost predictive clinical model to detect lung lesions due to COVID-19 infection.Design This prospective cohort study included COVID-19 survivors hospitalised between 30 March 2020 and 31 August 2020 followed-up 6 months after hospita...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMJ Publishing Group
2022-06-01
|
Series: | BMJ Open |
Online Access: | https://bmjopen.bmj.com/content/12/6/e059110.full |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832590153590243328 |
---|---|
author | Paulo A Lotufo Juliana C Ferreira Eloisa Bonfa Anna S Levin Rodrigo Caruso Chate Marta Imamura Esper G Kallas Roger Chammas Thais Mauad Izabel Marcilio Nelson Gouveia Ricardo Nitrini José Eduardo Krieger Marcio Valente Yamada Sawamura Michelle Louvaes Garcia Cristiano Gomes Guilherme Fonseca Jorge Hallak Luis Yu Marcio Mancini Maria Elizabeth Rossi Thiago Avelino-Silva Edivaldo M Utiyama Aluisio C Segurado Beatriz Perondi Anna Miethke-Morais Amanda C Montal Leila Harima Marjorie F Silva Marcelo C Rocha Maria Amélia de Jesus Carolina Carmo Clarice Tanaka Julio F M Marchini Thaís Guimarães Ester Sabino Carlos Roberto Ribeiro Carvalho Celina Almeida Lamas Diego Armando Cardona Cardenas Daniel Mario Lima Paula Gobi Scudeller João Marcos Salge Cesar Higa Nomura Marco Antonio Gutierrez Adriana L Araújo Bruno F Guedes Carolina S Lázari Cassiano C Antonio Claudia C Leite Emmanuel A Burdmann Euripedes C Miguel Fabio R Pinna Fabiane Y O Kawano Geraldo F Busatto Giovanni G Cerri Heraldo P Souza Izabel C Rios Larissa S Oliveira Linamara R Batisttella Luiz Henrique M Castro Marcello M C Magri Maria Cassia J M Corrêa Maria Cristina P B Francisco Maura S Oliveira Orestes V Forlenza Ricardo F Bento Rodolfo F Damiano Rossana P Francisco Solange R G Fusco Tarcisio E P Barros-Filho Wilson J Filho |
author_facet | Paulo A Lotufo Juliana C Ferreira Eloisa Bonfa Anna S Levin Rodrigo Caruso Chate Marta Imamura Esper G Kallas Roger Chammas Thais Mauad Izabel Marcilio Nelson Gouveia Ricardo Nitrini José Eduardo Krieger Marcio Valente Yamada Sawamura Michelle Louvaes Garcia Cristiano Gomes Guilherme Fonseca Jorge Hallak Luis Yu Marcio Mancini Maria Elizabeth Rossi Thiago Avelino-Silva Edivaldo M Utiyama Aluisio C Segurado Beatriz Perondi Anna Miethke-Morais Amanda C Montal Leila Harima Marjorie F Silva Marcelo C Rocha Maria Amélia de Jesus Carolina Carmo Clarice Tanaka Julio F M Marchini Thaís Guimarães Ester Sabino Carlos Roberto Ribeiro Carvalho Celina Almeida Lamas Diego Armando Cardona Cardenas Daniel Mario Lima Paula Gobi Scudeller João Marcos Salge Cesar Higa Nomura Marco Antonio Gutierrez Adriana L Araújo Bruno F Guedes Carolina S Lázari Cassiano C Antonio Claudia C Leite Emmanuel A Burdmann Euripedes C Miguel Fabio R Pinna Fabiane Y O Kawano Geraldo F Busatto Giovanni G Cerri Heraldo P Souza Izabel C Rios Larissa S Oliveira Linamara R Batisttella Luiz Henrique M Castro Marcello M C Magri Maria Cassia J M Corrêa Maria Cristina P B Francisco Maura S Oliveira Orestes V Forlenza Ricardo F Bento Rodolfo F Damiano Rossana P Francisco Solange R G Fusco Tarcisio E P Barros-Filho Wilson J Filho |
collection | DOAJ |
description | Objective This study aimed to propose a simple, accessible and low-cost predictive clinical model to detect lung lesions due to COVID-19 infection.Design This prospective cohort study included COVID-19 survivors hospitalised between 30 March 2020 and 31 August 2020 followed-up 6 months after hospital discharge. The pulmonary function was assessed using the modified Medical Research Council (mMRC) dyspnoea scale, oximetry (SpO2), spirometry (forced vital capacity (FVC)) and chest X-ray (CXR) during an in-person consultation. Patients with abnormalities in at least one of these parameters underwent chest CT. mMRC scale, SpO2, FVC and CXR findings were used to build a machine learning model for lung lesion detection on CT.Setting A tertiary hospital in Sao Paulo, Brazil.Participants 749 eligible RT-PCR-confirmed SARS-CoV-2-infected patients aged ≥18 years.Primary outcome measure A predictive clinical model for lung lesion detection on chest CT.Results There were 470 patients (63%) that had at least one sign of pulmonary involvement and were eligible for CT. Almost half of them (48%) had significant pulmonary abnormalities, including ground-glass opacities, parenchymal bands, reticulation, traction bronchiectasis and architectural distortion. The machine learning model, including the results of 257 patients with complete data on mMRC, SpO2, FVC, CXR and CT, accurately detected pulmonary lesions by the joint data of CXR, mMRC scale, SpO2 and FVC (sensitivity, 0.85±0.08; specificity, 0.70±0.06; F1-score, 0.79±0.06 and area under the curve, 0.80±0.07).Conclusion A predictive clinical model based on CXR, mMRC, oximetry and spirometry data can accurately screen patients with lung lesions after SARS-CoV-2 infection. Given that these examinations are highly accessible and low cost, this protocol can be automated and implemented in different countries for early detection of COVID-19 sequelae. |
format | Article |
id | doaj-art-d6a2820edfa9450580e08d6915561038 |
institution | Kabale University |
issn | 2044-6055 |
language | English |
publishDate | 2022-06-01 |
publisher | BMJ Publishing Group |
record_format | Article |
series | BMJ Open |
spelling | doaj-art-d6a2820edfa9450580e08d69155610382025-01-24T02:35:19ZengBMJ Publishing GroupBMJ Open2044-60552022-06-0112610.1136/bmjopen-2021-059110Chronic lung lesions in COVID-19 survivors: predictive clinical model Paulo A Lotufo0Juliana C FerreiraEloisa Bonfa1Anna S Levin2Rodrigo Caruso Chate3Marta Imamura4Esper G Kallas5Roger ChammasThais MauadIzabel Marcilio6Nelson Gouveia7Ricardo Nitrini8José Eduardo KriegerMarcio Valente Yamada Sawamura9Michelle Louvaes Garcia10Cristiano GomesGuilherme FonsecaJorge HallakLuis YuMarcio ManciniMaria Elizabeth RossiThiago Avelino-SilvaEdivaldo M UtiyamaAluisio C SeguradoBeatriz PerondiAnna Miethke-MoraisAmanda C MontalLeila HarimaMarjorie F SilvaMarcelo C RochaMaria Amélia de JesusCarolina CarmoClarice TanakaJulio F M MarchiniThaís GuimarãesEster Sabino11Carlos Roberto Ribeiro Carvalho12Celina Almeida Lamas13Diego Armando Cardona Cardenas14Daniel Mario Lima15Paula Gobi Scudeller16João Marcos Salge17Cesar Higa Nomura18Marco Antonio Gutierrez19Adriana L AraújoBruno F GuedesCarolina S LázariCassiano C AntonioClaudia C LeiteEmmanuel A BurdmannEuripedes C MiguelFabio R PinnaFabiane Y O KawanoGeraldo F BusattoGiovanni G CerriHeraldo P SouzaIzabel C RiosLarissa S OliveiraLinamara R BatisttellaLuiz Henrique M CastroMarcello M C MagriMaria Cassia J M CorrêaMaria Cristina P B FranciscoMaura S OliveiraOrestes V ForlenzaRicardo F BentoRodolfo F DamianoRossana P FranciscoSolange R G FuscoTarcisio E P Barros-FilhoWilson J Filho6 Center for Clinical and Epidemiologic Research, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BrazilHospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Rheumatology Division, Sao Paulo, BrazilDepartment of Infectious and Parasitic Diseases, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BrazilDepartment of Radiology, Hospital Israelita Albert Einstein, São Paulo, Brazil5 Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BrazilDepartment of Infectious and Parasitic Diseases, University of Sao Paulo, São Paulo, São Paulo, BrazilHospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, São Paulo, Brazil1 Departamento de Medicina Preventiva, Universidade de Sao Paulo Faculdade de Medicina, Sao Paulo, BrazilDepartamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, BrazilInstituto de Radiologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, BrazilDepartamento de Cardio-Pneumologia, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil7Department of Infectious Diseases, School of Medicine and Institute of Tropical Medicine, University of São Paulo, São Paulo, BrazilDiscipline of Pulmonology, Heart Institute (InCor), Hospital das Clínicas, Faculty of Medicine, University of São Paulo, São Paulo, BrazilInstituto do Coração—Divisão de Pneumologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilInstituto do Coração—Divisão de Informática, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilInstituto do Coração—Divisão de Informática, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilInstituto do Coração—Divisão de Pneumologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilInstituto do Coração—Divisão de Pneumologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilInstituto de Radiologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilInstituto do Coração—Divisão de Pneumologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilObjective This study aimed to propose a simple, accessible and low-cost predictive clinical model to detect lung lesions due to COVID-19 infection.Design This prospective cohort study included COVID-19 survivors hospitalised between 30 March 2020 and 31 August 2020 followed-up 6 months after hospital discharge. The pulmonary function was assessed using the modified Medical Research Council (mMRC) dyspnoea scale, oximetry (SpO2), spirometry (forced vital capacity (FVC)) and chest X-ray (CXR) during an in-person consultation. Patients with abnormalities in at least one of these parameters underwent chest CT. mMRC scale, SpO2, FVC and CXR findings were used to build a machine learning model for lung lesion detection on CT.Setting A tertiary hospital in Sao Paulo, Brazil.Participants 749 eligible RT-PCR-confirmed SARS-CoV-2-infected patients aged ≥18 years.Primary outcome measure A predictive clinical model for lung lesion detection on chest CT.Results There were 470 patients (63%) that had at least one sign of pulmonary involvement and were eligible for CT. Almost half of them (48%) had significant pulmonary abnormalities, including ground-glass opacities, parenchymal bands, reticulation, traction bronchiectasis and architectural distortion. The machine learning model, including the results of 257 patients with complete data on mMRC, SpO2, FVC, CXR and CT, accurately detected pulmonary lesions by the joint data of CXR, mMRC scale, SpO2 and FVC (sensitivity, 0.85±0.08; specificity, 0.70±0.06; F1-score, 0.79±0.06 and area under the curve, 0.80±0.07).Conclusion A predictive clinical model based on CXR, mMRC, oximetry and spirometry data can accurately screen patients with lung lesions after SARS-CoV-2 infection. Given that these examinations are highly accessible and low cost, this protocol can be automated and implemented in different countries for early detection of COVID-19 sequelae.https://bmjopen.bmj.com/content/12/6/e059110.full |
spellingShingle | Paulo A Lotufo Juliana C Ferreira Eloisa Bonfa Anna S Levin Rodrigo Caruso Chate Marta Imamura Esper G Kallas Roger Chammas Thais Mauad Izabel Marcilio Nelson Gouveia Ricardo Nitrini José Eduardo Krieger Marcio Valente Yamada Sawamura Michelle Louvaes Garcia Cristiano Gomes Guilherme Fonseca Jorge Hallak Luis Yu Marcio Mancini Maria Elizabeth Rossi Thiago Avelino-Silva Edivaldo M Utiyama Aluisio C Segurado Beatriz Perondi Anna Miethke-Morais Amanda C Montal Leila Harima Marjorie F Silva Marcelo C Rocha Maria Amélia de Jesus Carolina Carmo Clarice Tanaka Julio F M Marchini Thaís Guimarães Ester Sabino Carlos Roberto Ribeiro Carvalho Celina Almeida Lamas Diego Armando Cardona Cardenas Daniel Mario Lima Paula Gobi Scudeller João Marcos Salge Cesar Higa Nomura Marco Antonio Gutierrez Adriana L Araújo Bruno F Guedes Carolina S Lázari Cassiano C Antonio Claudia C Leite Emmanuel A Burdmann Euripedes C Miguel Fabio R Pinna Fabiane Y O Kawano Geraldo F Busatto Giovanni G Cerri Heraldo P Souza Izabel C Rios Larissa S Oliveira Linamara R Batisttella Luiz Henrique M Castro Marcello M C Magri Maria Cassia J M Corrêa Maria Cristina P B Francisco Maura S Oliveira Orestes V Forlenza Ricardo F Bento Rodolfo F Damiano Rossana P Francisco Solange R G Fusco Tarcisio E P Barros-Filho Wilson J Filho Chronic lung lesions in COVID-19 survivors: predictive clinical model BMJ Open |
title | Chronic lung lesions in COVID-19 survivors: predictive clinical model |
title_full | Chronic lung lesions in COVID-19 survivors: predictive clinical model |
title_fullStr | Chronic lung lesions in COVID-19 survivors: predictive clinical model |
title_full_unstemmed | Chronic lung lesions in COVID-19 survivors: predictive clinical model |
title_short | Chronic lung lesions in COVID-19 survivors: predictive clinical model |
title_sort | chronic lung lesions in covid 19 survivors predictive clinical model |
url | https://bmjopen.bmj.com/content/12/6/e059110.full |
work_keys_str_mv | AT chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT pauloalotufo chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT julianacferreira chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT eloisabonfa chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT annaslevin chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT rodrigocarusochate chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT martaimamura chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT espergkallas chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT rogerchammas chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT thaismauad chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT izabelmarcilio chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT nelsongouveia chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT ricardonitrini chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT joseeduardokrieger chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT marciovalenteyamadasawamura chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT michellelouvaesgarcia chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT cristianogomes chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT guilhermefonseca chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT jorgehallak chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT luisyu chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT marciomancini chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT mariaelizabethrossi chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT thiagoavelinosilva chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT edivaldomutiyama chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT aluisiocsegurado chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT beatrizperondi chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT annamiethkemorais chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT amandacmontal chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT leilaharima chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT marjoriefsilva chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT marcelocrocha chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT mariaameliadejesus chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT carolinacarmo chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT claricetanaka chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT juliofmmarchini chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT thaisguimaraes chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT estersabino chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT carlosrobertoribeirocarvalho chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT celinaalmeidalamas chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT diegoarmandocardonacardenas chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT danielmariolima chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT paulagobiscudeller chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT joaomarcossalge chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT cesarhiganomura chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT marcoantoniogutierrez chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT adrianalaraujo chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT brunofguedes chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT carolinaslazari chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT cassianocantonio chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT claudiacleite chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT emmanuelaburdmann chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT euripedescmiguel chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT fabiorpinna chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT fabianeyokawano chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT geraldofbusatto chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT giovannigcerri chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT heraldopsouza chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT izabelcrios chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT larissasoliveira chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT linamararbatisttella chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT luizhenriquemcastro chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT marcellomcmagri chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT mariacassiajmcorrea chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT mariacristinapbfrancisco chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT maurasoliveira chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT orestesvforlenza chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT ricardofbento chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT rodolfofdamiano chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT rossanapfrancisco chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT solangergfusco chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT tarcisioepbarrosfilho chroniclunglesionsincovid19survivorspredictiveclinicalmodel AT wilsonjfilho chroniclunglesionsincovid19survivorspredictiveclinicalmodel |