Chronic lung lesions in COVID-19 survivors: predictive clinical model

Objective This study aimed to propose a simple, accessible and low-cost predictive clinical model to detect lung lesions due to COVID-19 infection.Design This prospective cohort study included COVID-19 survivors hospitalised between 30 March 2020 and 31 August 2020 followed-up 6 months after hospita...

Full description

Saved in:
Bibliographic Details
Main Authors: Paulo A Lotufo, Juliana C Ferreira, Eloisa Bonfa, Anna S Levin, Rodrigo Caruso Chate, Marta Imamura, Esper G Kallas, Roger Chammas, Thais Mauad, Izabel Marcilio, Nelson Gouveia, Ricardo Nitrini, José Eduardo Krieger, Marcio Valente Yamada Sawamura, Michelle Louvaes Garcia, Cristiano Gomes, Guilherme Fonseca, Jorge Hallak, Luis Yu, Marcio Mancini, Maria Elizabeth Rossi, Thiago Avelino-Silva, Edivaldo M Utiyama, Aluisio C Segurado, Beatriz Perondi, Anna Miethke-Morais, Amanda C Montal, Leila Harima, Marjorie F Silva, Marcelo C Rocha, Maria Amélia de Jesus, Carolina Carmo, Clarice Tanaka, Julio F M Marchini, Thaís Guimarães, Ester Sabino, Carlos Roberto Ribeiro Carvalho, Celina Almeida Lamas, Diego Armando Cardona Cardenas, Daniel Mario Lima, Paula Gobi Scudeller, João Marcos Salge, Cesar Higa Nomura, Marco Antonio Gutierrez, Adriana L Araújo, Bruno F Guedes, Carolina S Lázari, Cassiano C Antonio, Claudia C Leite, Emmanuel A Burdmann, Euripedes C Miguel, Fabio R Pinna, Fabiane Y O Kawano, Geraldo F Busatto, Giovanni G Cerri, Heraldo P Souza, Izabel C Rios, Larissa S Oliveira, Linamara R Batisttella, Luiz Henrique M Castro, Marcello M C Magri, Maria Cassia J M Corrêa, Maria Cristina P B Francisco, Maura S Oliveira, Orestes V Forlenza, Ricardo F Bento, Rodolfo F Damiano, Rossana P Francisco, Solange R G Fusco, Tarcisio E P Barros-Filho, Wilson J Filho
Format: Article
Language:English
Published: BMJ Publishing Group 2022-06-01
Series:BMJ Open
Online Access:https://bmjopen.bmj.com/content/12/6/e059110.full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590153590243328
author Paulo A Lotufo
Juliana C Ferreira
Eloisa Bonfa
Anna S Levin
Rodrigo Caruso Chate
Marta Imamura
Esper G Kallas
Roger Chammas
Thais Mauad
Izabel Marcilio
Nelson Gouveia
Ricardo Nitrini
José Eduardo Krieger
Marcio Valente Yamada Sawamura
Michelle Louvaes Garcia
Cristiano Gomes
Guilherme Fonseca
Jorge Hallak
Luis Yu
Marcio Mancini
Maria Elizabeth Rossi
Thiago Avelino-Silva
Edivaldo M Utiyama
Aluisio C Segurado
Beatriz Perondi
Anna Miethke-Morais
Amanda C Montal
Leila Harima
Marjorie F Silva
Marcelo C Rocha
Maria Amélia de Jesus
Carolina Carmo
Clarice Tanaka
Julio F M Marchini
Thaís Guimarães
Ester Sabino
Carlos Roberto Ribeiro Carvalho
Celina Almeida Lamas
Diego Armando Cardona Cardenas
Daniel Mario Lima
Paula Gobi Scudeller
João Marcos Salge
Cesar Higa Nomura
Marco Antonio Gutierrez
Adriana L Araújo
Bruno F Guedes
Carolina S Lázari
Cassiano C Antonio
Claudia C Leite
Emmanuel A Burdmann
Euripedes C Miguel
Fabio R Pinna
Fabiane Y O Kawano
Geraldo F Busatto
Giovanni G Cerri
Heraldo P Souza
Izabel C Rios
Larissa S Oliveira
Linamara R Batisttella
Luiz Henrique M Castro
Marcello M C Magri
Maria Cassia J M Corrêa
Maria Cristina P B Francisco
Maura S Oliveira
Orestes V Forlenza
Ricardo F Bento
Rodolfo F Damiano
Rossana P Francisco
Solange R G Fusco
Tarcisio E P Barros-Filho
Wilson J Filho
author_facet Paulo A Lotufo
Juliana C Ferreira
Eloisa Bonfa
Anna S Levin
Rodrigo Caruso Chate
Marta Imamura
Esper G Kallas
Roger Chammas
Thais Mauad
Izabel Marcilio
Nelson Gouveia
Ricardo Nitrini
José Eduardo Krieger
Marcio Valente Yamada Sawamura
Michelle Louvaes Garcia
Cristiano Gomes
Guilherme Fonseca
Jorge Hallak
Luis Yu
Marcio Mancini
Maria Elizabeth Rossi
Thiago Avelino-Silva
Edivaldo M Utiyama
Aluisio C Segurado
Beatriz Perondi
Anna Miethke-Morais
Amanda C Montal
Leila Harima
Marjorie F Silva
Marcelo C Rocha
Maria Amélia de Jesus
Carolina Carmo
Clarice Tanaka
Julio F M Marchini
Thaís Guimarães
Ester Sabino
Carlos Roberto Ribeiro Carvalho
Celina Almeida Lamas
Diego Armando Cardona Cardenas
Daniel Mario Lima
Paula Gobi Scudeller
João Marcos Salge
Cesar Higa Nomura
Marco Antonio Gutierrez
Adriana L Araújo
Bruno F Guedes
Carolina S Lázari
Cassiano C Antonio
Claudia C Leite
Emmanuel A Burdmann
Euripedes C Miguel
Fabio R Pinna
Fabiane Y O Kawano
Geraldo F Busatto
Giovanni G Cerri
Heraldo P Souza
Izabel C Rios
Larissa S Oliveira
Linamara R Batisttella
Luiz Henrique M Castro
Marcello M C Magri
Maria Cassia J M Corrêa
Maria Cristina P B Francisco
Maura S Oliveira
Orestes V Forlenza
Ricardo F Bento
Rodolfo F Damiano
Rossana P Francisco
Solange R G Fusco
Tarcisio E P Barros-Filho
Wilson J Filho
collection DOAJ
description Objective This study aimed to propose a simple, accessible and low-cost predictive clinical model to detect lung lesions due to COVID-19 infection.Design This prospective cohort study included COVID-19 survivors hospitalised between 30 March 2020 and 31 August 2020 followed-up 6 months after hospital discharge. The pulmonary function was assessed using the modified Medical Research Council (mMRC) dyspnoea scale, oximetry (SpO2), spirometry (forced vital capacity (FVC)) and chest X-ray (CXR) during an in-person consultation. Patients with abnormalities in at least one of these parameters underwent chest CT. mMRC scale, SpO2, FVC and CXR findings were used to build a machine learning model for lung lesion detection on CT.Setting A tertiary hospital in Sao Paulo, Brazil.Participants 749 eligible RT-PCR-confirmed SARS-CoV-2-infected patients aged ≥18 years.Primary outcome measure A predictive clinical model for lung lesion detection on chest CT.Results There were 470 patients (63%) that had at least one sign of pulmonary involvement and were eligible for CT. Almost half of them (48%) had significant pulmonary abnormalities, including ground-glass opacities, parenchymal bands, reticulation, traction bronchiectasis and architectural distortion. The machine learning model, including the results of 257 patients with complete data on mMRC, SpO2, FVC, CXR and CT, accurately detected pulmonary lesions by the joint data of CXR, mMRC scale, SpO2 and FVC (sensitivity, 0.85±0.08; specificity, 0.70±0.06; F1-score, 0.79±0.06 and area under the curve, 0.80±0.07).Conclusion A predictive clinical model based on CXR, mMRC, oximetry and spirometry data can accurately screen patients with lung lesions after SARS-CoV-2 infection. Given that these examinations are highly accessible and low cost, this protocol can be automated and implemented in different countries for early detection of COVID-19 sequelae.
format Article
id doaj-art-d6a2820edfa9450580e08d6915561038
institution Kabale University
issn 2044-6055
language English
publishDate 2022-06-01
publisher BMJ Publishing Group
record_format Article
series BMJ Open
spelling doaj-art-d6a2820edfa9450580e08d69155610382025-01-24T02:35:19ZengBMJ Publishing GroupBMJ Open2044-60552022-06-0112610.1136/bmjopen-2021-059110Chronic lung lesions in COVID-19 survivors: predictive clinical model Paulo A Lotufo0Juliana C FerreiraEloisa Bonfa1Anna S Levin2Rodrigo Caruso Chate3Marta Imamura4Esper G Kallas5Roger ChammasThais MauadIzabel Marcilio6Nelson Gouveia7Ricardo Nitrini8José Eduardo KriegerMarcio Valente Yamada Sawamura9Michelle Louvaes Garcia10Cristiano GomesGuilherme FonsecaJorge HallakLuis YuMarcio ManciniMaria Elizabeth RossiThiago Avelino-SilvaEdivaldo M UtiyamaAluisio C SeguradoBeatriz PerondiAnna Miethke-MoraisAmanda C MontalLeila HarimaMarjorie F SilvaMarcelo C RochaMaria Amélia de JesusCarolina CarmoClarice TanakaJulio F M MarchiniThaís GuimarãesEster Sabino11Carlos Roberto Ribeiro Carvalho12Celina Almeida Lamas13Diego Armando Cardona Cardenas14Daniel Mario Lima15Paula Gobi Scudeller16João Marcos Salge17Cesar Higa Nomura18Marco Antonio Gutierrez19Adriana L AraújoBruno F GuedesCarolina S LázariCassiano C AntonioClaudia C LeiteEmmanuel A BurdmannEuripedes C MiguelFabio R PinnaFabiane Y O KawanoGeraldo F BusattoGiovanni G CerriHeraldo P SouzaIzabel C RiosLarissa S OliveiraLinamara R BatisttellaLuiz Henrique M CastroMarcello M C MagriMaria Cassia J M CorrêaMaria Cristina P B FranciscoMaura S OliveiraOrestes V ForlenzaRicardo F BentoRodolfo F DamianoRossana P FranciscoSolange R G FuscoTarcisio E P Barros-FilhoWilson J Filho6 Center for Clinical and Epidemiologic Research, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BrazilHospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Rheumatology Division, Sao Paulo, BrazilDepartment of Infectious and Parasitic Diseases, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BrazilDepartment of Radiology, Hospital Israelita Albert Einstein, São Paulo, Brazil5 Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BrazilDepartment of Infectious and Parasitic Diseases, University of Sao Paulo, São Paulo, São Paulo, BrazilHospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, São Paulo, Brazil1 Departamento de Medicina Preventiva, Universidade de Sao Paulo Faculdade de Medicina, Sao Paulo, BrazilDepartamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, BrazilInstituto de Radiologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, BrazilDepartamento de Cardio-Pneumologia, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil7Department of Infectious Diseases, School of Medicine and Institute of Tropical Medicine, University of São Paulo, São Paulo, BrazilDiscipline of Pulmonology, Heart Institute (InCor), Hospital das Clínicas, Faculty of Medicine, University of São Paulo, São Paulo, BrazilInstituto do Coração—Divisão de Pneumologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilInstituto do Coração—Divisão de Informática, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilInstituto do Coração—Divisão de Informática, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilInstituto do Coração—Divisão de Pneumologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilInstituto do Coração—Divisão de Pneumologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilInstituto de Radiologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilInstituto do Coração—Divisão de Pneumologia, Universidade de São Paulo Hospital das Clínicas, Sao Paulo, BrazilObjective This study aimed to propose a simple, accessible and low-cost predictive clinical model to detect lung lesions due to COVID-19 infection.Design This prospective cohort study included COVID-19 survivors hospitalised between 30 March 2020 and 31 August 2020 followed-up 6 months after hospital discharge. The pulmonary function was assessed using the modified Medical Research Council (mMRC) dyspnoea scale, oximetry (SpO2), spirometry (forced vital capacity (FVC)) and chest X-ray (CXR) during an in-person consultation. Patients with abnormalities in at least one of these parameters underwent chest CT. mMRC scale, SpO2, FVC and CXR findings were used to build a machine learning model for lung lesion detection on CT.Setting A tertiary hospital in Sao Paulo, Brazil.Participants 749 eligible RT-PCR-confirmed SARS-CoV-2-infected patients aged ≥18 years.Primary outcome measure A predictive clinical model for lung lesion detection on chest CT.Results There were 470 patients (63%) that had at least one sign of pulmonary involvement and were eligible for CT. Almost half of them (48%) had significant pulmonary abnormalities, including ground-glass opacities, parenchymal bands, reticulation, traction bronchiectasis and architectural distortion. The machine learning model, including the results of 257 patients with complete data on mMRC, SpO2, FVC, CXR and CT, accurately detected pulmonary lesions by the joint data of CXR, mMRC scale, SpO2 and FVC (sensitivity, 0.85±0.08; specificity, 0.70±0.06; F1-score, 0.79±0.06 and area under the curve, 0.80±0.07).Conclusion A predictive clinical model based on CXR, mMRC, oximetry and spirometry data can accurately screen patients with lung lesions after SARS-CoV-2 infection. Given that these examinations are highly accessible and low cost, this protocol can be automated and implemented in different countries for early detection of COVID-19 sequelae.https://bmjopen.bmj.com/content/12/6/e059110.full
spellingShingle Paulo A Lotufo
Juliana C Ferreira
Eloisa Bonfa
Anna S Levin
Rodrigo Caruso Chate
Marta Imamura
Esper G Kallas
Roger Chammas
Thais Mauad
Izabel Marcilio
Nelson Gouveia
Ricardo Nitrini
José Eduardo Krieger
Marcio Valente Yamada Sawamura
Michelle Louvaes Garcia
Cristiano Gomes
Guilherme Fonseca
Jorge Hallak
Luis Yu
Marcio Mancini
Maria Elizabeth Rossi
Thiago Avelino-Silva
Edivaldo M Utiyama
Aluisio C Segurado
Beatriz Perondi
Anna Miethke-Morais
Amanda C Montal
Leila Harima
Marjorie F Silva
Marcelo C Rocha
Maria Amélia de Jesus
Carolina Carmo
Clarice Tanaka
Julio F M Marchini
Thaís Guimarães
Ester Sabino
Carlos Roberto Ribeiro Carvalho
Celina Almeida Lamas
Diego Armando Cardona Cardenas
Daniel Mario Lima
Paula Gobi Scudeller
João Marcos Salge
Cesar Higa Nomura
Marco Antonio Gutierrez
Adriana L Araújo
Bruno F Guedes
Carolina S Lázari
Cassiano C Antonio
Claudia C Leite
Emmanuel A Burdmann
Euripedes C Miguel
Fabio R Pinna
Fabiane Y O Kawano
Geraldo F Busatto
Giovanni G Cerri
Heraldo P Souza
Izabel C Rios
Larissa S Oliveira
Linamara R Batisttella
Luiz Henrique M Castro
Marcello M C Magri
Maria Cassia J M Corrêa
Maria Cristina P B Francisco
Maura S Oliveira
Orestes V Forlenza
Ricardo F Bento
Rodolfo F Damiano
Rossana P Francisco
Solange R G Fusco
Tarcisio E P Barros-Filho
Wilson J Filho
Chronic lung lesions in COVID-19 survivors: predictive clinical model
BMJ Open
title Chronic lung lesions in COVID-19 survivors: predictive clinical model
title_full Chronic lung lesions in COVID-19 survivors: predictive clinical model
title_fullStr Chronic lung lesions in COVID-19 survivors: predictive clinical model
title_full_unstemmed Chronic lung lesions in COVID-19 survivors: predictive clinical model
title_short Chronic lung lesions in COVID-19 survivors: predictive clinical model
title_sort chronic lung lesions in covid 19 survivors predictive clinical model
url https://bmjopen.bmj.com/content/12/6/e059110.full
work_keys_str_mv AT chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT pauloalotufo chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT julianacferreira chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT eloisabonfa chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT annaslevin chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT rodrigocarusochate chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT martaimamura chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT espergkallas chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT rogerchammas chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT thaismauad chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT izabelmarcilio chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT nelsongouveia chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT ricardonitrini chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT joseeduardokrieger chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT marciovalenteyamadasawamura chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT michellelouvaesgarcia chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT cristianogomes chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT guilhermefonseca chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT jorgehallak chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT luisyu chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT marciomancini chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT mariaelizabethrossi chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT thiagoavelinosilva chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT edivaldomutiyama chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT aluisiocsegurado chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT beatrizperondi chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT annamiethkemorais chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT amandacmontal chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT leilaharima chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT marjoriefsilva chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT marcelocrocha chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT mariaameliadejesus chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT carolinacarmo chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT claricetanaka chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT juliofmmarchini chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT thaisguimaraes chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT estersabino chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT carlosrobertoribeirocarvalho chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT celinaalmeidalamas chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT diegoarmandocardonacardenas chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT danielmariolima chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT paulagobiscudeller chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT joaomarcossalge chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT cesarhiganomura chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT marcoantoniogutierrez chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT adrianalaraujo chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT brunofguedes chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT carolinaslazari chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT cassianocantonio chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT claudiacleite chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT emmanuelaburdmann chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT euripedescmiguel chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT fabiorpinna chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT fabianeyokawano chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT geraldofbusatto chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT giovannigcerri chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT heraldopsouza chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT izabelcrios chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT larissasoliveira chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT linamararbatisttella chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT luizhenriquemcastro chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT marcellomcmagri chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT mariacassiajmcorrea chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT mariacristinapbfrancisco chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT maurasoliveira chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT orestesvforlenza chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT ricardofbento chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT rodolfofdamiano chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT rossanapfrancisco chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT solangergfusco chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT tarcisioepbarrosfilho chroniclunglesionsincovid19survivorspredictiveclinicalmodel
AT wilsonjfilho chroniclunglesionsincovid19survivorspredictiveclinicalmodel