Analysis of Facial Areas to Identify CHD Risks Based on Facial Textures

Early screening for coronary heart disease (CHD) remains insufficiently addressed, underscoring the need for a more effective screening tool. Previous studies have reported a classification accuracy of only 72.73%, which is inadequate. This study aimed to develop and evaluate a machine learning mode...

Full description

Saved in:
Bibliographic Details
Main Authors: Budi Sunarko, Agung Adi Firdaus, Yudha Andriano Rismawan, Anan Nugroho
Format: Article
Language:English
Published: Universitas Gadjah Mada 2025-02-01
Series:Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Subjects:
Online Access:https://jurnal.ugm.ac.id/v3/JNTETI/article/view/13658
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Early screening for coronary heart disease (CHD) remains insufficiently addressed, underscoring the need for a more effective screening tool. Previous studies have reported a classification accuracy of only 72.73%, which is inadequate. This study aimed to develop and evaluate a machine learning model or diagnose CHD using facial texture features and to compare the performance across different facial regions to provide recommendations for improvement. The research involved constructing a machine learning model that extracted texture features from six facial regions of interest (ROIs) using the gray level co-occurrence matrix (GLCM) and employed an artificial neural network (ANN) algorithm. The datasets were full-face images of CHD patients (positive) and healthy people (negative). The face parts identified were the right crow’s feet, right canthus, nose bridge, forehead, left canthus, and left crow’s feet. A total of 132 (72 positive and 60 negative CHD) datasets were divided into 80% (n = 106) training data and 20% (n = 26) testing data. The developed model achieved a notable accuracy of 76.9%. The findings revealed that two facial regions—canthus and forehead—demonstrated excellent accuracy of 80.97% and 90%, respectively. Meanwhile, the crow’s feet and nose bridge regions showed good accuracies at 73.50% and 65%, respectively. Based on the results, this research has proven to be able to become a model for early CHD screening with good accuracy and faster execution.
ISSN:2301-4156
2460-5719