Identification and Estimation of Graphical Models with Nonignorable Nonresponse
We study the identification and estimation of graphical models with nonignorable nonresponse. An observable variable correlated to nonresponse is added to identify the mean of response for the unidentifiable model. An approach to estimating the marginal mean of response is proposed, based on simulat...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2021-01-01
|
| Series: | Journal of Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2021/7570222 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We study the identification and estimation of graphical models with nonignorable nonresponse. An observable variable correlated to nonresponse is added to identify the mean of response for the unidentifiable model. An approach to estimating the marginal mean of response is proposed, based on simulation imputation methods which are introduced for a variety of models including linear, generalized linear, and monotone nonlinear models. The proposed mean estimators are N-consistent, where N is the sample size. Finite sample simulations confirm the effectiveness of the proposed method. Sensitivity analysis for the untestable assumption on our augmented model is also conducted. A real data example is employed to illustrate the use of the proposed methodology. |
|---|---|
| ISSN: | 2314-4785 |