Bifurcation of Gradient Mappings Possessing the Palais-Smale Condition

This paper considers bifurcation at the principal eigenvalue of a class of gradient operators which possess the Palais-Smale condition. The existence of the bifurcation branch and the asymptotic nature of the bifurcation is verified by using the compactness in the Palais Smale condition and the orde...

Full description

Saved in:
Bibliographic Details
Main Author: Elliot Tonkes
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2011/564930
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers bifurcation at the principal eigenvalue of a class of gradient operators which possess the Palais-Smale condition. The existence of the bifurcation branch and the asymptotic nature of the bifurcation is verified by using the compactness in the Palais Smale condition and the order of the nonlinearity in the operator. The main result is applied to estimate the asyptotic behaviour of solutions to a class of semilinear elliptic equations with a critical Sobolev exponent.
ISSN:0161-1712
1687-0425