Dual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stress

Abstract Background Many different stress signaling pathways converge in a common response: slowdown or arrest cell cycle in the G1 phase. The G1/S transition (called Start in budding yeast) is a key checkpoint controlled by positive and negative regulators. Among them, Whi7 and Whi5 are transcripti...

Full description

Saved in:
Bibliographic Details
Main Authors: Mihai Spiridon-Bodi, Cristina Ros-Carrero, J. Carlos Igual, Mercè Gomar-Alba
Format: Article
Language:English
Published: BMC 2025-01-01
Series:Cell Communication and Signaling
Subjects:
Online Access:https://doi.org/10.1186/s12964-025-02027-z
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832594580106641408
author Mihai Spiridon-Bodi
Cristina Ros-Carrero
J. Carlos Igual
Mercè Gomar-Alba
author_facet Mihai Spiridon-Bodi
Cristina Ros-Carrero
J. Carlos Igual
Mercè Gomar-Alba
author_sort Mihai Spiridon-Bodi
collection DOAJ
description Abstract Background Many different stress signaling pathways converge in a common response: slowdown or arrest cell cycle in the G1 phase. The G1/S transition (called Start in budding yeast) is a key checkpoint controlled by positive and negative regulators. Among them, Whi7 and Whi5 are transcriptional repressors of the G1/S transcriptional program, yeast functional homologs of the Retinoblastoma family proteins in mammalian cells. Under standard conditions, Whi7 plays a lesser role than Whi5 in Start inhibition. However, under cell wall stress, Whi7 is induced and plays a more important role in G1/S control. In this work, we investigated the functional hallmarks of Whi7 and Whi5, which determine their strength as Start inhibitors under cell wall stress. Methods The response of Saccharomyces cerevisiae to Calcofluor White was investigated to characterize the regulation and function of Whi7 and Whi5 under cell wall stress. To control their protein levels, we used dose-dependent β-estradiol-induced expression and auxin-induced degron protein fusions. We also performed Chromatin Immunoprecipitation assays to investigate Whi7 and Whi5 association with Start promoters and scored cell cycle arrest and re-entry using cell microscopy assays. Results We found that cell wall stress promoted the specific upregulation of the Whi7 Start repressor. First, although cell wall stress increases Whi7 protein levels, this is not the only determinant behind the Whi7 function in promoting G1 arrest. Indeed, artificial induction of Whi5 at the same protein level resulted in a lower G1 block. Second, under cell wall stress, Whi7 was specifically recruited to SBF-target promoters, independent of the increase in its protein levels or cell cycle stage. Finally, we found that Whi7 protein instability further increased during cell wall stress and that Whi7 degradation triggered advanced cell cycle re-entry. Conclusions Here, we show that cell wall stress signaling specifically enhances Whi7 function as a Start transcriptional repressor. Importantly, we identified new Whi7-specific regulatory mechanisms that do not operate in the Whi5 repressor. Our results indicate that cells may benefit from stress-specific repressors to ensure the stress-induced G1 arrest and that Whi7 rapid degradation may be particularly important to resume cell cycle upon adaptation.
format Article
id doaj-art-d5f97377fa944b4b979fa54b7e61b0d0
institution Kabale University
issn 1478-811X
language English
publishDate 2025-01-01
publisher BMC
record_format Article
series Cell Communication and Signaling
spelling doaj-art-d5f97377fa944b4b979fa54b7e61b0d02025-01-19T12:33:04ZengBMCCell Communication and Signaling1478-811X2025-01-0123111810.1186/s12964-025-02027-zDual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stressMihai Spiridon-Bodi0Cristina Ros-Carrero1J. Carlos Igual2Mercè Gomar-Alba3Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de ValènciaInstitut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de ValènciaInstitut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de ValènciaInstitut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de ValènciaAbstract Background Many different stress signaling pathways converge in a common response: slowdown or arrest cell cycle in the G1 phase. The G1/S transition (called Start in budding yeast) is a key checkpoint controlled by positive and negative regulators. Among them, Whi7 and Whi5 are transcriptional repressors of the G1/S transcriptional program, yeast functional homologs of the Retinoblastoma family proteins in mammalian cells. Under standard conditions, Whi7 plays a lesser role than Whi5 in Start inhibition. However, under cell wall stress, Whi7 is induced and plays a more important role in G1/S control. In this work, we investigated the functional hallmarks of Whi7 and Whi5, which determine their strength as Start inhibitors under cell wall stress. Methods The response of Saccharomyces cerevisiae to Calcofluor White was investigated to characterize the regulation and function of Whi7 and Whi5 under cell wall stress. To control their protein levels, we used dose-dependent β-estradiol-induced expression and auxin-induced degron protein fusions. We also performed Chromatin Immunoprecipitation assays to investigate Whi7 and Whi5 association with Start promoters and scored cell cycle arrest and re-entry using cell microscopy assays. Results We found that cell wall stress promoted the specific upregulation of the Whi7 Start repressor. First, although cell wall stress increases Whi7 protein levels, this is not the only determinant behind the Whi7 function in promoting G1 arrest. Indeed, artificial induction of Whi5 at the same protein level resulted in a lower G1 block. Second, under cell wall stress, Whi7 was specifically recruited to SBF-target promoters, independent of the increase in its protein levels or cell cycle stage. Finally, we found that Whi7 protein instability further increased during cell wall stress and that Whi7 degradation triggered advanced cell cycle re-entry. Conclusions Here, we show that cell wall stress signaling specifically enhances Whi7 function as a Start transcriptional repressor. Importantly, we identified new Whi7-specific regulatory mechanisms that do not operate in the Whi5 repressor. Our results indicate that cells may benefit from stress-specific repressors to ensure the stress-induced G1 arrest and that Whi7 rapid degradation may be particularly important to resume cell cycle upon adaptation.https://doi.org/10.1186/s12964-025-02027-zCWI pathwayCell wall stressWhi7Whi5StartCell cycle
spellingShingle Mihai Spiridon-Bodi
Cristina Ros-Carrero
J. Carlos Igual
Mercè Gomar-Alba
Dual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stress
Cell Communication and Signaling
CWI pathway
Cell wall stress
Whi7
Whi5
Start
Cell cycle
title Dual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stress
title_full Dual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stress
title_fullStr Dual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stress
title_full_unstemmed Dual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stress
title_short Dual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stress
title_sort dual regulation of the levels and function of start transcriptional repressors drives g1 arrest in response to cell wall stress
topic CWI pathway
Cell wall stress
Whi7
Whi5
Start
Cell cycle
url https://doi.org/10.1186/s12964-025-02027-z
work_keys_str_mv AT mihaispiridonbodi dualregulationofthelevelsandfunctionofstarttranscriptionalrepressorsdrivesg1arrestinresponsetocellwallstress
AT cristinaroscarrero dualregulationofthelevelsandfunctionofstarttranscriptionalrepressorsdrivesg1arrestinresponsetocellwallstress
AT jcarlosigual dualregulationofthelevelsandfunctionofstarttranscriptionalrepressorsdrivesg1arrestinresponsetocellwallstress
AT mercegomaralba dualregulationofthelevelsandfunctionofstarttranscriptionalrepressorsdrivesg1arrestinresponsetocellwallstress