Modulation Electronic Properties of Silicane/SnSe2 Van der Waals Heterostructures Using External Force and Electric Field

In recent years, much interest in the study of Van der Waals heterostructures (vdWhs) has arisen. This has led to a significant amount of fundamental research being produced, from which novel optoelectronic applications have been established. By using first principles, we analyze the electronic stru...

Full description

Saved in:
Bibliographic Details
Main Authors: Gang Xu, Yelu He
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2021/9986781
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, much interest in the study of Van der Waals heterostructures (vdWhs) has arisen. This has led to a significant amount of fundamental research being produced, from which novel optoelectronic applications have been established. By using first principles, we analyze the electronic structure of silicane/SnSe2 vdWhs in the response to an externally applied electric field and a normal strain. The results show that the silicane/SnSe2 vdWh acts as an indirect semiconductor when it is subjected to an applied electric field between −1 and 0.1 V/Å and becomes a metal in the 0.2 to 1 V/Å range. Significantly, the electronic band alignments of the silicane/SnSe2 vdWhs are modified from a type-II to a type-I when a field of −0.7 V/Å is applied. Furthermore, it is determined that the silicane/SnSe2 vdWhs appears to have a semiconductor-metal phase transition at a strain of −5%. Our results indicate that the silicane/SnSe2 vdWhs have the potential for applications in novel high-performance optoelectronic devices.
ISSN:1687-8434
1687-8442