Three-Point Boundary Value Problems of Nonlinear Second-Order q-Difference Equations Involving Different Numbers of q
We study a new class of three-point boundary value problems of nonlinear second-order q-difference equations. Our problems contain different numbers of q in derivatives and integrals. By using a variety of fixed point theorems (such as Banach’s contraction principle, Boyd and Wong fixed point theore...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2013/763786 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study a new class of three-point boundary value problems of nonlinear second-order q-difference equations. Our problems contain different numbers of q in derivatives and integrals. By using a variety of fixed point theorems (such as Banach’s contraction principle, Boyd and Wong fixed point theorem for nonlinear contractions, Krasnoselskii’s fixed point theorem, and Leray-Schauder nonlinear alternative) and Leray-Schauder degree theory, some new existence and uniqueness results are obtained. Illustrative examples are also presented. |
---|---|
ISSN: | 1110-757X 1687-0042 |