ADA-NAF: Semi-Supervised Anomaly Detection Based on the Neural Attention Forest
In this study, we present a novel model called ADA-NAF (Anomaly Detection Autoencoder with the Neural Attention Forest) for semi-supervised anomaly detection that uniquely integrates the Neural Attention Forest (NAF) architecture which has been developed to combine a random forest classifier with a...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Russian Academy of Sciences, St. Petersburg Federal Research Center
2025-01-01
|
Series: | Информатика и автоматизация |
Subjects: | |
Online Access: | https://ia.spcras.ru/index.php/sp/article/view/16598 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we present a novel model called ADA-NAF (Anomaly Detection Autoencoder with the Neural Attention Forest) for semi-supervised anomaly detection that uniquely integrates the Neural Attention Forest (NAF) architecture which has been developed to combine a random forest classifier with a neural network computing attention weights to aggregate decision tree predictions. The key idea behind ADA-NAF is the incorporation of NAF into an autoencoder structure, where it implements functions of a compressor as well as a reconstructor of input vectors. Our approach introduces several technical advances. First, a proposed end-to-end training methodology over normal data minimizes the reconstruction errors while learning and optimizing neural attention weights to focus on hidden features. Second, a novel encoding mechanism leverages NAF’s hierarchical structure to capture complex data patterns. Third, an adaptive anomaly scoring framework combines the reconstruction errors with the attention-based feature importance. Through extensive experimentation across diverse datasets, ADA-NAF demonstrates superior performance compared to state-of-the-art methods. The model shows particular strength in handling high-dimensional data and capturing subtle anomalies that traditional methods often do not detect. Our results validate the ADA-NAF’s effectiveness and versatility as a robust solution for real-world anomaly detection challenges with promising applications in cybersecurity, industrial monitoring, and healthcare diagnostics. This work advances the field by introducing a novel architecture that combines the interpretability of attention mechanisms with the powerful feature learning capabilities of autoencoders. |
---|---|
ISSN: | 2713-3192 2713-3206 |