Auto-collimation diffraction of two-dimensional metal–dielectric grating with azimuth angle of 45°

Grating under auto-collimation configuration with polarization-independent high diffraction efficiency plays an important role in the displacement measurement system, spectral beam combining system and so on. In this paper, we proposed, for the first time, a reflective two-dimensional metal-dielectr...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang Yi-Han, Wang Jin, Chen Yu-Da, Huang Zhi-Sen, Jia Wei, Zhou Chang-He
Format: Article
Language:English
Published: De Gruyter 2025-01-01
Series:Nanophotonics
Subjects:
Online Access:https://doi.org/10.1515/nanoph-2024-0399
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Grating under auto-collimation configuration with polarization-independent high diffraction efficiency plays an important role in the displacement measurement system, spectral beam combining system and so on. In this paper, we proposed, for the first time, a reflective two-dimensional metal-dielectric grating of which the (−1, −1) order beam is diffracted back along the input light direction, when the incident azimuth angle is 45°. With optimized structure, the (−1, −1) order diffraction efficiencies of transverse electric polarization (TE) and transverse magnetic polarization (TM) are 95.01 % and 95.04 % at incident wavelength of 632 nm, respectively. The structure based on the frustum of a cone performs well in manufacturing tolerance, which provides possibility for practical applications. A grating is fabricated experimentally in this research. The high efficiencies of TE and TM polarization have great application potential in 2D displacement measurement technique and high power laser systems.
ISSN:2192-8614