Approaching the Discrete Dynamical Systems by means of Skew-Evolution Semiflows

The aim of this paper is to highlight current developments and new trends in the stability theory. Due to the outstanding role played in the study of stable, instable, and, respectively, central manifolds, the properties of exponential dichotomy and trichotomy for evolution equations represent two d...

Full description

Saved in:
Bibliographic Details
Main Author: Codruţa Stoica
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2016/4375069
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this paper is to highlight current developments and new trends in the stability theory. Due to the outstanding role played in the study of stable, instable, and, respectively, central manifolds, the properties of exponential dichotomy and trichotomy for evolution equations represent two domains of the stability theory with an impressive development. Hence, we intend to construct a framework for an asymptotic approach of these properties for discrete dynamical systems using the associated skew-evolution semiflows. To this aim, we give definitions and characterizations for the properties of exponential stability and instability, and we extend these techniques to obtain a unified study of the properties of exponential dichotomy and trichotomy. The results are underlined by several examples.
ISSN:1026-0226
1607-887X