A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem
For the Steklov eigenvalue problem, we establish a type of multigrid discretizations based on the fixed-shift inverse iteration and study in depth its a priori/a posteriori error estimates. In addition, we also propose an adaptive algorithm on the basis of the a posteriori error estimates. Finally,...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2016/4691759 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832558964491943936 |
---|---|
author | Feiyan Li Hai Bi |
author_facet | Feiyan Li Hai Bi |
author_sort | Feiyan Li |
collection | DOAJ |
description | For the Steklov eigenvalue problem, we establish a type of multigrid discretizations based on the fixed-shift inverse iteration and study in depth its a priori/a posteriori error estimates. In addition, we also propose an adaptive algorithm on the basis of the a posteriori error estimates. Finally, we present some numerical examples to validate the efficiency of our method. |
format | Article |
id | doaj-art-d53d2d6d41b04de18745a5e0c664e15d |
institution | Kabale University |
issn | 1687-9120 1687-9139 |
language | English |
publishDate | 2016-01-01 |
publisher | Wiley |
record_format | Article |
series | Advances in Mathematical Physics |
spelling | doaj-art-d53d2d6d41b04de18745a5e0c664e15d2025-02-03T01:31:17ZengWileyAdvances in Mathematical Physics1687-91201687-91392016-01-01201610.1155/2016/46917594691759A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue ProblemFeiyan Li0Hai Bi1School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, ChinaSchool of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, ChinaFor the Steklov eigenvalue problem, we establish a type of multigrid discretizations based on the fixed-shift inverse iteration and study in depth its a priori/a posteriori error estimates. In addition, we also propose an adaptive algorithm on the basis of the a posteriori error estimates. Finally, we present some numerical examples to validate the efficiency of our method.http://dx.doi.org/10.1155/2016/4691759 |
spellingShingle | Feiyan Li Hai Bi A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem Advances in Mathematical Physics |
title | A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem |
title_full | A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem |
title_fullStr | A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem |
title_full_unstemmed | A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem |
title_short | A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem |
title_sort | type of multigrid method based on the fixed shift inverse iteration for the steklov eigenvalue problem |
url | http://dx.doi.org/10.1155/2016/4691759 |
work_keys_str_mv | AT feiyanli atypeofmultigridmethodbasedonthefixedshiftinverseiterationforthestekloveigenvalueproblem AT haibi atypeofmultigridmethodbasedonthefixedshiftinverseiterationforthestekloveigenvalueproblem AT feiyanli typeofmultigridmethodbasedonthefixedshiftinverseiterationforthestekloveigenvalueproblem AT haibi typeofmultigridmethodbasedonthefixedshiftinverseiterationforthestekloveigenvalueproblem |