A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem

For the Steklov eigenvalue problem, we establish a type of multigrid discretizations based on the fixed-shift inverse iteration and study in depth its a priori/a posteriori error estimates. In addition, we also propose an adaptive algorithm on the basis of the a posteriori error estimates. Finally,...

Full description

Saved in:
Bibliographic Details
Main Authors: Feiyan Li, Hai Bi
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2016/4691759
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558964491943936
author Feiyan Li
Hai Bi
author_facet Feiyan Li
Hai Bi
author_sort Feiyan Li
collection DOAJ
description For the Steklov eigenvalue problem, we establish a type of multigrid discretizations based on the fixed-shift inverse iteration and study in depth its a priori/a posteriori error estimates. In addition, we also propose an adaptive algorithm on the basis of the a posteriori error estimates. Finally, we present some numerical examples to validate the efficiency of our method.
format Article
id doaj-art-d53d2d6d41b04de18745a5e0c664e15d
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2016-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-d53d2d6d41b04de18745a5e0c664e15d2025-02-03T01:31:17ZengWileyAdvances in Mathematical Physics1687-91201687-91392016-01-01201610.1155/2016/46917594691759A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue ProblemFeiyan Li0Hai Bi1School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, ChinaSchool of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, ChinaFor the Steklov eigenvalue problem, we establish a type of multigrid discretizations based on the fixed-shift inverse iteration and study in depth its a priori/a posteriori error estimates. In addition, we also propose an adaptive algorithm on the basis of the a posteriori error estimates. Finally, we present some numerical examples to validate the efficiency of our method.http://dx.doi.org/10.1155/2016/4691759
spellingShingle Feiyan Li
Hai Bi
A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem
Advances in Mathematical Physics
title A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem
title_full A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem
title_fullStr A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem
title_full_unstemmed A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem
title_short A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem
title_sort type of multigrid method based on the fixed shift inverse iteration for the steklov eigenvalue problem
url http://dx.doi.org/10.1155/2016/4691759
work_keys_str_mv AT feiyanli atypeofmultigridmethodbasedonthefixedshiftinverseiterationforthestekloveigenvalueproblem
AT haibi atypeofmultigridmethodbasedonthefixedshiftinverseiterationforthestekloveigenvalueproblem
AT feiyanli typeofmultigridmethodbasedonthefixedshiftinverseiterationforthestekloveigenvalueproblem
AT haibi typeofmultigridmethodbasedonthefixedshiftinverseiterationforthestekloveigenvalueproblem