Autonomous Close Formation Flight Control with Fixed Wing and Quadrotor Test Beds

Autonomous formation flight is a key approach for reducing energy cost and managing traffic in future high density airspace. The use of Unmanned Aerial Vehicles (UAVs) has allowed low-budget and low-risk validation of autonomous formation flight concepts. This paper discusses the implementation and...

Full description

Saved in:
Bibliographic Details
Main Authors: Caleb Rice, Yu Gu, Haiyang Chao, Trenton Larrabee, Srikanth Gururajan, Marcello Napolitano, Tanmay Mandal, Matthew Rhudy
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2016/9517654
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Autonomous formation flight is a key approach for reducing energy cost and managing traffic in future high density airspace. The use of Unmanned Aerial Vehicles (UAVs) has allowed low-budget and low-risk validation of autonomous formation flight concepts. This paper discusses the implementation and flight testing of nonlinear dynamic inversion (NLDI) controllers for close formation flight (CFF) using two distinct UAV platforms: a set of fixed wing aircraft named “Phastball” and a set of quadrotors named “NEO.” Experimental results show that autonomous CFF with approximately 5-wingspan separation is achievable with a pair of low-cost unmanned Phastball research aircraft. Simulations of the quadrotor flight also validate the design of the NLDI controller for the NEO quadrotors.
ISSN:1687-5966
1687-5974