Heat Transfer of Gas Flow within a Partially Heated or Cooled Square Cavity
Natural convection of gas flow (air) confined within an enclosed square-section cavity is investigated numerically using the lattice Boltzmann method (LBM). The right (left) side of the enclosure is partially heated (cooled) by a hot (cold) chip, while the left (right) one is completely kept at cold...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Modelling and Simulation in Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/8886682 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Natural convection of gas flow (air) confined within an enclosed square-section cavity is investigated numerically using the lattice Boltzmann method (LBM). The right (left) side of the enclosure is partially heated (cooled) by a hot (cold) chip, while the left (right) one is completely kept at cold (hot) temperature. However, the horizontal walls and vertical parts near the chip are kept adiabatic. The buoyancy effect induced by the gravity acceleration, related to the convection force, is evaluated through the Rayleigh number in the range of 103−106 (laminar regime). The wall heating-ratio effect on the flow properties such as temperature and velocity profiles was examined. The heat transfer is analyzed through the Nusselt number for different chip lengths. Results show that the wall heat ratio has an interesting effect on the flow behavior. Results show good agreement with those of full natural convection in the literature, experimental, and simulation data. |
---|---|
ISSN: | 1687-5591 1687-5605 |