GSA-KAN: A Hybrid Model for Short-Term Traffic Forecasting

Short-term traffic flow forecasting is an essential part of intelligent transportation systems. However, it is challenging to model traffic flow accurately due to its rapid changes over time. The Kolmogorov–Arnold Network (KAN) has shown parameter efficiency with lower memory and computational overh...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhizhe Lin, Dawei Wang, Chuxin Cao, Hai Xie, Teng Zhou, Chunjie Cao
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/7/1158
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Short-term traffic flow forecasting is an essential part of intelligent transportation systems. However, it is challenging to model traffic flow accurately due to its rapid changes over time. The Kolmogorov–Arnold Network (KAN) has shown parameter efficiency with lower memory and computational overhead via spline-parametrized functions to handle high-dimensional temporal data. In this paper, we propose to unlock the potential of the Kolmogorov–Arnold network for traffic flow forecasting by optimizing its parameters with a heuristic algorithm. The gravitational search algorithm learns to understand optimized KANs for different traffic scenarios. We conduct extensive experiments on four real-world benchmark datasets from Amsterdam, the Netherlands. The RMSE of GSA-KAN is reduced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.95</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.96</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.71</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.29</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and the MAPE of GSA-KAN is reduced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.66</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.88</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.41</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.87</mn><mo>%</mo></mrow></semantics></math></inline-formula> on the A1, A2, A4, and A8 datasets, respectively. The experimental results demonstrate that GSA-KAN performs advanced parametric and nonparametric models.
ISSN:2227-7390