New versions of the Nyman-Beurling criterion for the Riemann hypothesis

Let ρ(x)=x−[x], χ=χ(0,1), λ(x)=χ(x)logx, and M(x)=ΣK≤x μ(k), where μ is the Möbius function. Norms are in Lp(0,∞), 1<p<∞. For M1(θ)=M(1/θ) it is noted that ξ(s)≠0 in ℜs>1/p is equivalent to ‖M1‖r<∞ for all r∈(1,p). The space ℬ is the linear space generated by the functions x↦ρ(θ/x) with...

Full description

Saved in:
Bibliographic Details
Main Author: Luis Báez-Duarte
Format: Article
Language:English
Published: Wiley 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171202013248
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832565678869053440
author Luis Báez-Duarte
author_facet Luis Báez-Duarte
author_sort Luis Báez-Duarte
collection DOAJ
description Let ρ(x)=x−[x], χ=χ(0,1), λ(x)=χ(x)logx, and M(x)=ΣK≤x μ(k), where μ is the Möbius function. Norms are in Lp(0,∞), 1<p<∞. For M1(θ)=M(1/θ) it is noted that ξ(s)≠0 in ℜs>1/p is equivalent to ‖M1‖r<∞ for all r∈(1,p). The space ℬ is the linear space generated by the functions x↦ρ(θ/x) with θ∈(0,1]. Define Gn(x)=∫1/n1M1(θ)ρ(θ/x)θ−1 dθ. For all p∈(1,∞) we prove the following theorems: (I) ‖M1‖p<∞ implies λ∈ℬ¯Lp, and λ∈ℬ¯Lp implies ‖M1‖r<∞ for all r∈(1,p). (II) ‖Gn−λ‖p→0 implies ξ(s)≠0 in ℜs≥1/p, and ξ(s)≠0 in ℜs≥1/p implies ‖Gn−λ‖r→0 for all r∈(1,p).
format Article
id doaj-art-d4e45f21844c4deaa70b3a032c932eda
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2002-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-d4e45f21844c4deaa70b3a032c932eda2025-02-03T01:07:04ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252002-01-0131738740610.1155/S0161171202013248New versions of the Nyman-Beurling criterion for the Riemann hypothesisLuis Báez-Duarte0Departamento de Matemáticas, Instituto Venezolano de Investigaciones Científicas, Apartado 21827, Caracas 1020-A, VenezuelaLet ρ(x)=x−[x], χ=χ(0,1), λ(x)=χ(x)logx, and M(x)=ΣK≤x μ(k), where μ is the Möbius function. Norms are in Lp(0,∞), 1<p<∞. For M1(θ)=M(1/θ) it is noted that ξ(s)≠0 in ℜs>1/p is equivalent to ‖M1‖r<∞ for all r∈(1,p). The space ℬ is the linear space generated by the functions x↦ρ(θ/x) with θ∈(0,1]. Define Gn(x)=∫1/n1M1(θ)ρ(θ/x)θ−1 dθ. For all p∈(1,∞) we prove the following theorems: (I) ‖M1‖p<∞ implies λ∈ℬ¯Lp, and λ∈ℬ¯Lp implies ‖M1‖r<∞ for all r∈(1,p). (II) ‖Gn−λ‖p→0 implies ξ(s)≠0 in ℜs≥1/p, and ξ(s)≠0 in ℜs≥1/p implies ‖Gn−λ‖r→0 for all r∈(1,p).http://dx.doi.org/10.1155/S0161171202013248
spellingShingle Luis Báez-Duarte
New versions of the Nyman-Beurling criterion for the Riemann hypothesis
International Journal of Mathematics and Mathematical Sciences
title New versions of the Nyman-Beurling criterion for the Riemann hypothesis
title_full New versions of the Nyman-Beurling criterion for the Riemann hypothesis
title_fullStr New versions of the Nyman-Beurling criterion for the Riemann hypothesis
title_full_unstemmed New versions of the Nyman-Beurling criterion for the Riemann hypothesis
title_short New versions of the Nyman-Beurling criterion for the Riemann hypothesis
title_sort new versions of the nyman beurling criterion for the riemann hypothesis
url http://dx.doi.org/10.1155/S0161171202013248
work_keys_str_mv AT luisbaezduarte newversionsofthenymanbeurlingcriterionfortheriemannhypothesis