A Fractional Derivative Insight into Full-Stage Creep Behavior in Deep Coal
The time-dependent creep behavior of coal is essential for assessing long-term structural stability and operational safety in deep coal mining. Therefore, this work develops a full-stage creep constitutive model. By integrating fractional calculus theory with statistical damage mechanics, a nonlinea...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Fractal and Fractional |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2504-3110/9/7/473 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The time-dependent creep behavior of coal is essential for assessing long-term structural stability and operational safety in deep coal mining. Therefore, this work develops a full-stage creep constitutive model. By integrating fractional calculus theory with statistical damage mechanics, a nonlinear fractional-order (FO) damage creep model is constructed through serial connection of elastic, viscous, viscoelastic, and viscoelastic–plastic components. Based on this model, both one-dimensional and three-dimensional (3D) fractional creep damage constitutive equations are acquired. Model parameters are identified using experimental data from deep coal samples in the mining area. The result curves of the improved model coincide with experimental data points, accurately describing the deceleration creep stage (DCS), steady-state creep stage (SCS), and accelerated creep stage (ACS). Furthermore, a sensitivity analysis elucidates the impact of model parameters on coal creep behavior, thereby confirming the model’s robustness and applicability. Consequently, the proposed model offers a solid theoretical basis for evaluating the sustained stability of deep coal mining and has great application potential in deep underground engineering. |
|---|---|
| ISSN: | 2504-3110 |