The Effect of Negative Poisson’s Ratio Polyurethane Scaffolds for Articular Cartilage Tissue Engineering Applications

An auxetic polyurethane (PU) scaffold was prepared to investigate chondrocyte proliferation under compressive stimulation for cartilage regeneration. To give a negative Poisson’s ratio to the PU scaffold, volumetric compression with a 3 : 1 ratio was applied during heat treatment. For the control PU...

Full description

Saved in:
Bibliographic Details
Main Authors: Yeong Jun Park, Jeong Koo Kim
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2013/853289
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An auxetic polyurethane (PU) scaffold was prepared to investigate chondrocyte proliferation under compressive stimulation for cartilage regeneration. To give a negative Poisson’s ratio to the PU scaffold, volumetric compression with a 3 : 1 ratio was applied during heat treatment. For the control PU scaffold, the Poisson’s ratio was 0.9 ± 0.25 with elongation at 20% of the strain range. Poisson’s ratio for experimental specimens was approximately −0.4 ± 0.12 under the same conditions. In cell proliferation tests, cells were cultivated within the prepared scaffold under compression with a 20% strain range. With a 20% strain range elongation, the compressive load was approximately 0.3 N. The experimental group showed a 1.3 times higher cellular proliferation rate than that of the control group after 3 days in culture. At day 5 of culture, however, the rate of proliferation of the control group increased so that there was no significant difference between groups. However, collagen content (produced by the cells) in the cell-proliferated medium was 1.5 times higher in the experimental group after 5 days in culture. This may have been due to the effectiveness of the auxetic structure of the scaffold. An isotropic compressive load was transmitted to the cells due to the negative Poisson ratio of the scaffold.
ISSN:1687-8434
1687-8442