Inelastic resonant tunnelling through adjacent localised electronic states in van der Waals heterostructures

Abstract Van der Waals heterostructures offer unprecedented opportunities to design next stage functional electronic 2D devices. Most architectures of those devices incorporate large bandgap insulator – hBN as an encapsulating or tunnel barrier layers. Here, we use an architecture of gated vertical...

Full description

Saved in:
Bibliographic Details
Main Authors: E. E. Vdovin, K. Kapralov, Yu. N. Khanin, A. Margaryan, K. Watanabe, T. Taniguchi, C. Yang, S. V. Morozov, D. A. Svintsov, K. S. Novoselov, D. A. Ghazaryan
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:npj 2D Materials and Applications
Online Access:https://doi.org/10.1038/s41699-025-00528-6
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832585742180679680
author E. E. Vdovin
K. Kapralov
Yu. N. Khanin
A. Margaryan
K. Watanabe
T. Taniguchi
C. Yang
S. V. Morozov
D. A. Svintsov
K. S. Novoselov
D. A. Ghazaryan
author_facet E. E. Vdovin
K. Kapralov
Yu. N. Khanin
A. Margaryan
K. Watanabe
T. Taniguchi
C. Yang
S. V. Morozov
D. A. Svintsov
K. S. Novoselov
D. A. Ghazaryan
author_sort E. E. Vdovin
collection DOAJ
description Abstract Van der Waals heterostructures offer unprecedented opportunities to design next stage functional electronic 2D devices. Most architectures of those devices incorporate large bandgap insulator – hBN as an encapsulating or tunnel barrier layers. Here, we use an architecture of gated vertical tunnelling transistors to study a generic phenomenon of electron resonant tunnelling through adjacent localised electronic states in hBN barriers. We demonstrate that in the case of two localised electronic states, the tunnelling can be of inelastic nature giving rise to explicitly strong resonant features. It allows accurate tunnelling spectroscopy of delicate features of emitting and collecting layer electronic density of states, such as second neutrality point bandgap of moiré monolayer and electric field induced bandgap of Bernal bilayer graphene. Our findings enrich the perception of interaction mechanisms among the localised electronic states in hBN barriers paving the way for future explorations into their applications.
format Article
id doaj-art-d48b5b33e28b40a48efe1359bf303c9c
institution Kabale University
issn 2397-7132
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series npj 2D Materials and Applications
spelling doaj-art-d48b5b33e28b40a48efe1359bf303c9c2025-01-26T12:36:13ZengNature Portfolionpj 2D Materials and Applications2397-71322025-01-01911710.1038/s41699-025-00528-6Inelastic resonant tunnelling through adjacent localised electronic states in van der Waals heterostructuresE. E. Vdovin0K. Kapralov1Yu. N. Khanin2A. Margaryan3K. Watanabe4T. Taniguchi5C. Yang6S. V. Morozov7D. A. Svintsov8K. S. Novoselov9D. A. Ghazaryan10Institute of Microelectronics Technology RASCenter for Photonics and 2D Materials, Moscow Institute of Physics and TechnologyInstitute of Microelectronics Technology RASLaboratory of Advanced Functional Materials, Yerevan State UniversityNational Institute for Materials ScienceNational Institute for Materials ScienceState Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen UniversityInstitute of Microelectronics Technology RASCenter for Photonics and 2D Materials, Moscow Institute of Physics and TechnologyInstitute for Functional Intelligent Materials, National University of SingaporeLaboratory of Advanced Functional Materials, Yerevan State UniversityAbstract Van der Waals heterostructures offer unprecedented opportunities to design next stage functional electronic 2D devices. Most architectures of those devices incorporate large bandgap insulator – hBN as an encapsulating or tunnel barrier layers. Here, we use an architecture of gated vertical tunnelling transistors to study a generic phenomenon of electron resonant tunnelling through adjacent localised electronic states in hBN barriers. We demonstrate that in the case of two localised electronic states, the tunnelling can be of inelastic nature giving rise to explicitly strong resonant features. It allows accurate tunnelling spectroscopy of delicate features of emitting and collecting layer electronic density of states, such as second neutrality point bandgap of moiré monolayer and electric field induced bandgap of Bernal bilayer graphene. Our findings enrich the perception of interaction mechanisms among the localised electronic states in hBN barriers paving the way for future explorations into their applications.https://doi.org/10.1038/s41699-025-00528-6
spellingShingle E. E. Vdovin
K. Kapralov
Yu. N. Khanin
A. Margaryan
K. Watanabe
T. Taniguchi
C. Yang
S. V. Morozov
D. A. Svintsov
K. S. Novoselov
D. A. Ghazaryan
Inelastic resonant tunnelling through adjacent localised electronic states in van der Waals heterostructures
npj 2D Materials and Applications
title Inelastic resonant tunnelling through adjacent localised electronic states in van der Waals heterostructures
title_full Inelastic resonant tunnelling through adjacent localised electronic states in van der Waals heterostructures
title_fullStr Inelastic resonant tunnelling through adjacent localised electronic states in van der Waals heterostructures
title_full_unstemmed Inelastic resonant tunnelling through adjacent localised electronic states in van der Waals heterostructures
title_short Inelastic resonant tunnelling through adjacent localised electronic states in van der Waals heterostructures
title_sort inelastic resonant tunnelling through adjacent localised electronic states in van der waals heterostructures
url https://doi.org/10.1038/s41699-025-00528-6
work_keys_str_mv AT eevdovin inelasticresonanttunnellingthroughadjacentlocalisedelectronicstatesinvanderwaalsheterostructures
AT kkapralov inelasticresonanttunnellingthroughadjacentlocalisedelectronicstatesinvanderwaalsheterostructures
AT yunkhanin inelasticresonanttunnellingthroughadjacentlocalisedelectronicstatesinvanderwaalsheterostructures
AT amargaryan inelasticresonanttunnellingthroughadjacentlocalisedelectronicstatesinvanderwaalsheterostructures
AT kwatanabe inelasticresonanttunnellingthroughadjacentlocalisedelectronicstatesinvanderwaalsheterostructures
AT ttaniguchi inelasticresonanttunnellingthroughadjacentlocalisedelectronicstatesinvanderwaalsheterostructures
AT cyang inelasticresonanttunnellingthroughadjacentlocalisedelectronicstatesinvanderwaalsheterostructures
AT svmorozov inelasticresonanttunnellingthroughadjacentlocalisedelectronicstatesinvanderwaalsheterostructures
AT dasvintsov inelasticresonanttunnellingthroughadjacentlocalisedelectronicstatesinvanderwaalsheterostructures
AT ksnovoselov inelasticresonanttunnellingthroughadjacentlocalisedelectronicstatesinvanderwaalsheterostructures
AT daghazaryan inelasticresonanttunnellingthroughadjacentlocalisedelectronicstatesinvanderwaalsheterostructures