Prediction of the Punching Load Strength of SCS Slabs with Stud-Bolt Shear Connectors Using Numerical Modeling and GEP Algorithm
Using bolt shear connectors in Steel-Concrete-Steel (SCS) slabs is very important due to producing a complete steel plates connection and adjusting the sandwich thickness desirably. Therefore, in the present research, a numerical study is conducted on the flexural behavior of SCS sandwich slabs with...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Semnan University
2023-08-01
|
Series: | Journal of Rehabilitation in Civil Engineering |
Subjects: | |
Online Access: | https://civiljournal.semnan.ac.ir/article_6932_712651c265d4cc7df9c2746bfd5fa9b1.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using bolt shear connectors in Steel-Concrete-Steel (SCS) slabs is very important due to producing a complete steel plates connection and adjusting the sandwich thickness desirably. Therefore, in the present research, a numerical study is conducted on the flexural behavior of SCS sandwich slabs with stud-bolt shear connectors under the effect of the quasi-static concentrated load. For this purpose, first, the experimental specimens extracted from the previously published study were numerically modeled and quasi-statically analyzed using explicit dynamic analysis. Then based on the tests, the models were validated. Subsequently, the effect of the parameters, including the thickness of steel plates, stud-bolts diameter, the concrete core thickness, center-to-center distance of stud-bolt connectors, and the concrete core strength was evaluated based on the numerical models on the failure modes and the force-displacement curve. Finally, using the experimental setup and gene expression programming (GEP) algorithm, several numerical models were planned to predict the maximum strength of the slabs and a simple relation was proposed. The maximum strength resulting from the proposed relation and numerical models had an acceptable agreement with an error of 11% based on mean absolute percentage error (MAPE). |
---|---|
ISSN: | 2345-4415 2345-4423 |