Superparamagnetic Bifunctional Bisphosphonates Nanoparticles: A Potential MRI Contrast Agent for Osteoporosis Therapy and Diagnostic

A bone targeting nanosystem is reported here which combined magnetic contrast agent for Magnetic Resonance Imaging (MRI) and a therapeutic agent (bisphosphonates) into one drug delivery system. This new targeting nanoplatform consists of superparamagnetic γFe2O3 nanoparticles conjugated to 1,5-dihy...

Full description

Saved in:
Bibliographic Details
Main Authors: Y. Lalatonne, M. Monteil, H. Jouni, J. M. Serfaty, O. Sainte-Catherine, N. Lièvre, S. Kusmia, P. Weinmann, M. Lecouvey, L. Motte
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Journal of Osteoporosis
Online Access:http://dx.doi.org/10.4061/2010/747852
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bone targeting nanosystem is reported here which combined magnetic contrast agent for Magnetic Resonance Imaging (MRI) and a therapeutic agent (bisphosphonates) into one drug delivery system. This new targeting nanoplatform consists of superparamagnetic γFe2O3 nanoparticles conjugated to 1,5-dihydroxy-1,5,5-tris-phosphono-pentyl-phosphonic acid (di-HMBPs) molecules with a bisphosphonate function at the outer of the nanoparticle surface for bone targeting. The as-synthesized nanoparticles were evaluated as a specific MRI contrast agent by adsorption study onto hydroxyapatite and MRI measurment. The strong adsorption of the bisphosphonates nanoparticles to hydroxyapatite and their use as MRI T2∗ contrast agent were demonstrated. Cellular tests performed on human osteosarcoma cells (MG63) show that γFe2O3@di-HMBP hybrid nanomaterial has no citoxity effect in cell viability and may act as a diagnostic and therapeutic system.
ISSN:2042-0064