Environment-friendly Ca2+/Cr3+ co-doping LaAlO3 ceramics with excellent infrared radiation performance for energy-saving

Ca2+/Cr3+ co-doped LaAlO3 infrared (IR) ceramics have been proven to be potential energy-saving materials for high-temperature industries because of their high emissivity and high-temperature stability. However, Cr6+ formation commonly occurs in materials and poses environmental and health risks, su...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinglai Yuan, Qinghu Wang, Runke Wu, Shaobai Sang, Yibiao Xu, Xiong Liang, Liping Pan, Bingbing Fan, Yawei Li, Rui Zhang, Jiangtao Li, Olena Volkova
Format: Article
Language:English
Published: Tsinghua University Press 2025-01-01
Series:Journal of Advanced Ceramics
Subjects:
Online Access:https://www.sciopen.com/article/10.26599/JAC.2024.9221017
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ca2+/Cr3+ co-doped LaAlO3 infrared (IR) ceramics have been proven to be potential energy-saving materials for high-temperature industries because of their high emissivity and high-temperature stability. However, Cr6+ formation commonly occurs in materials and poses environmental and health risks, such as Cr6+ dissolution in water and CrO3(g) volatilization. In this study, we combined high emissivity with in situ detoxification by introducing residual Al2O3 into Ca2+/Cr3+ co-doped LaAlO3 ceramics. Compared with the undoped ceramics, the addition of 20 wt% residual Al2O3 resulted in a 78.5% reduction to 18.44 mg/kg (lower than the EU standard of 20 mg/kg) in Cr6+ dissolution and a decrease in 77.8% CrO3(g) volatilization. This significant detoxification effect can be attributed to the formation of CaAl12−xCrxO19. Additionally, as the residual Al2O3 content increased from 5 to 20 wt%, the ceramics maintained high emissivity, above 0.896 in the near-infrared band and 0.781 in the mid-infrared band. Furthermore, the IR coating effectively increased the surface temperature (from 767.1 to 790.7 °C/min) and the heat radiation of the heating source, increasing the heating rate from 31.7 to 34.6 °C/min during water heating. This work offers a promising approach for designing environmentally friendly IR ceramics with excellent IR performance for energy-saving applications in the high-temperature industry.
ISSN:2226-4108
2227-8508