Environment-friendly Ca2+/Cr3+ co-doping LaAlO3 ceramics with excellent infrared radiation performance for energy-saving
Ca2+/Cr3+ co-doped LaAlO3 infrared (IR) ceramics have been proven to be potential energy-saving materials for high-temperature industries because of their high emissivity and high-temperature stability. However, Cr6+ formation commonly occurs in materials and poses environmental and health risks, su...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Tsinghua University Press
2025-01-01
|
Series: | Journal of Advanced Ceramics |
Subjects: | |
Online Access: | https://www.sciopen.com/article/10.26599/JAC.2024.9221017 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ca2+/Cr3+ co-doped LaAlO3 infrared (IR) ceramics have been proven to be potential energy-saving materials for high-temperature industries because of their high emissivity and high-temperature stability. However, Cr6+ formation commonly occurs in materials and poses environmental and health risks, such as Cr6+ dissolution in water and CrO3(g) volatilization. In this study, we combined high emissivity with in situ detoxification by introducing residual Al2O3 into Ca2+/Cr3+ co-doped LaAlO3 ceramics. Compared with the undoped ceramics, the addition of 20 wt% residual Al2O3 resulted in a 78.5% reduction to 18.44 mg/kg (lower than the EU standard of 20 mg/kg) in Cr6+ dissolution and a decrease in 77.8% CrO3(g) volatilization. This significant detoxification effect can be attributed to the formation of CaAl12−xCrxO19. Additionally, as the residual Al2O3 content increased from 5 to 20 wt%, the ceramics maintained high emissivity, above 0.896 in the near-infrared band and 0.781 in the mid-infrared band. Furthermore, the IR coating effectively increased the surface temperature (from 767.1 to 790.7 °C/min) and the heat radiation of the heating source, increasing the heating rate from 31.7 to 34.6 °C/min during water heating. This work offers a promising approach for designing environmentally friendly IR ceramics with excellent IR performance for energy-saving applications in the high-temperature industry. |
---|---|
ISSN: | 2226-4108 2227-8508 |