Maps Preserving Idempotence on Matrix Spaces
Suppose F is an arbitrary field. Let |F| be the number of the elements of F. Let Mn(F) be the space of all n×n matrices over F, let Sn(F) be the subset of Mn(F) consisting of all symmetric matrices, and let Tn(F) be the subset of Mn(F) consisting of all upper-triangular matrices. Let V∈{Sn(F),Mn(F),...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2015/428203 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832551338498588672 |
---|---|
author | Yuqiu Sheng Hanyu Zhang |
author_facet | Yuqiu Sheng Hanyu Zhang |
author_sort | Yuqiu Sheng |
collection | DOAJ |
description | Suppose F is an arbitrary field. Let |F| be the number of the elements of F. Let Mn(F) be the space of all n×n matrices over F, let Sn(F) be the subset of Mn(F) consisting of all symmetric matrices, and let Tn(F) be the subset of Mn(F) consisting of all upper-triangular matrices. Let V∈{Sn(F),Mn(F),Tn(F)}; a map Φ:V→V is said to preserve idempotence if A-λB is idempotent if and only if Φ(A)-λΦ(B) is idempotent for any A,B∈V and λ∈F. In this paper, the maps preserving idempotence on Sn(F), Mn(F), and Tn(F) were characterized in case |F|=3. |
format | Article |
id | doaj-art-d3b0512262bb406b94d096a71db65341 |
institution | Kabale University |
issn | 2314-4629 2314-4785 |
language | English |
publishDate | 2015-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Mathematics |
spelling | doaj-art-d3b0512262bb406b94d096a71db653412025-02-03T06:01:44ZengWileyJournal of Mathematics2314-46292314-47852015-01-01201510.1155/2015/428203428203Maps Preserving Idempotence on Matrix SpacesYuqiu Sheng0Hanyu Zhang1School of Mathematical Science, Heilongjiang University, Harbin 150080, ChinaSchool of Mathematical Science, Heilongjiang University, Harbin 150080, ChinaSuppose F is an arbitrary field. Let |F| be the number of the elements of F. Let Mn(F) be the space of all n×n matrices over F, let Sn(F) be the subset of Mn(F) consisting of all symmetric matrices, and let Tn(F) be the subset of Mn(F) consisting of all upper-triangular matrices. Let V∈{Sn(F),Mn(F),Tn(F)}; a map Φ:V→V is said to preserve idempotence if A-λB is idempotent if and only if Φ(A)-λΦ(B) is idempotent for any A,B∈V and λ∈F. In this paper, the maps preserving idempotence on Sn(F), Mn(F), and Tn(F) were characterized in case |F|=3.http://dx.doi.org/10.1155/2015/428203 |
spellingShingle | Yuqiu Sheng Hanyu Zhang Maps Preserving Idempotence on Matrix Spaces Journal of Mathematics |
title | Maps Preserving Idempotence on Matrix Spaces |
title_full | Maps Preserving Idempotence on Matrix Spaces |
title_fullStr | Maps Preserving Idempotence on Matrix Spaces |
title_full_unstemmed | Maps Preserving Idempotence on Matrix Spaces |
title_short | Maps Preserving Idempotence on Matrix Spaces |
title_sort | maps preserving idempotence on matrix spaces |
url | http://dx.doi.org/10.1155/2015/428203 |
work_keys_str_mv | AT yuqiusheng mapspreservingidempotenceonmatrixspaces AT hanyuzhang mapspreservingidempotenceonmatrixspaces |