Unit group of integral group ring <mml:math display="inline"><mml:mrow><mml:mi>ℤ</mml:mi><mml:mo class="MathClass-open">(</mml:mo><mml:mi>G</mml:mi> <mml:mo class="MathClass-bin">×</mml:mo> <mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>

Presenting an explicit descryption of unit group in the integral group ring of a given non-abelian group is a classical and open problem. Let S3C3ℤ(S3×C3)(F55⋊F3)⋊(S3∗×C2)Fρρℤ(S3×C3)S3RS3R=ℤ[ω]ωℤ(G×C3)GV(G)GU(ℤ(G×C3))

Saved in:
Bibliographic Details
Main Author: Ömer Küsmüş
Format: Article
Language:English
Published: Miskolc University Press 2024-01-01
Series:Miskolc Mathematical Notes
Online Access:http://mat76.mat.uni-miskolc.hu/mnotes/article/4666
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832592247712907264
author Ömer Küsmüş
author_facet Ömer Küsmüş
author_sort Ömer Küsmüş
collection DOAJ
description Presenting an explicit descryption of unit group in the integral group ring of a given non-abelian group is a classical and open problem. Let S3C3ℤ(S3×C3)(F55⋊F3)⋊(S3∗×C2)Fρρℤ(S3×C3)S3RS3R=ℤ[ω]ωℤ(G×C3)GV(G)GU(ℤ(G×C3))
format Article
id doaj-art-d3941b563cbc41269c5ae0f3edaef1d7
institution Kabale University
issn 1787-2405
1787-2413
language English
publishDate 2024-01-01
publisher Miskolc University Press
record_format Article
series Miskolc Mathematical Notes
spelling doaj-art-d3941b563cbc41269c5ae0f3edaef1d72025-01-21T12:00:07ZengMiskolc University PressMiskolc Mathematical Notes1787-24051787-24132024-01-0125284510.18514/MMN.2024.4666Unit group of integral group ring <mml:math display="inline"><mml:mrow><mml:mi>ℤ</mml:mi><mml:mo class="MathClass-open">(</mml:mo><mml:mi>G</mml:mi> <mml:mo class="MathClass-bin">×</mml:mo> <mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>Ömer KüsmüşPresenting an explicit descryption of unit group in the integral group ring of a given non-abelian group is a classical and open problem. Let S3C3ℤ(S3×C3)(F55⋊F3)⋊(S3∗×C2)Fρρℤ(S3×C3)S3RS3R=ℤ[ω]ωℤ(G×C3)GV(G)GU(ℤ(G×C3))http://mat76.mat.uni-miskolc.hu/mnotes/article/4666
spellingShingle Ömer Küsmüş
Unit group of integral group ring <mml:math display="inline"><mml:mrow><mml:mi>ℤ</mml:mi><mml:mo class="MathClass-open">(</mml:mo><mml:mi>G</mml:mi> <mml:mo class="MathClass-bin">×</mml:mo> <mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>
Miskolc Mathematical Notes
title Unit group of integral group ring <mml:math display="inline"><mml:mrow><mml:mi>ℤ</mml:mi><mml:mo class="MathClass-open">(</mml:mo><mml:mi>G</mml:mi> <mml:mo class="MathClass-bin">×</mml:mo> <mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>
title_full Unit group of integral group ring <mml:math display="inline"><mml:mrow><mml:mi>ℤ</mml:mi><mml:mo class="MathClass-open">(</mml:mo><mml:mi>G</mml:mi> <mml:mo class="MathClass-bin">×</mml:mo> <mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>
title_fullStr Unit group of integral group ring <mml:math display="inline"><mml:mrow><mml:mi>ℤ</mml:mi><mml:mo class="MathClass-open">(</mml:mo><mml:mi>G</mml:mi> <mml:mo class="MathClass-bin">×</mml:mo> <mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>
title_full_unstemmed Unit group of integral group ring <mml:math display="inline"><mml:mrow><mml:mi>ℤ</mml:mi><mml:mo class="MathClass-open">(</mml:mo><mml:mi>G</mml:mi> <mml:mo class="MathClass-bin">×</mml:mo> <mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>
title_short Unit group of integral group ring <mml:math display="inline"><mml:mrow><mml:mi>ℤ</mml:mi><mml:mo class="MathClass-open">(</mml:mo><mml:mi>G</mml:mi> <mml:mo class="MathClass-bin">×</mml:mo> <mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>
title_sort unit group of integral group ring mml math display inline mml mrow mml mi z mml mi mml mo class mathclass open mml mo mml mi g mml mi mml mo class mathclass bin mml mo mml msub mml mrow mml mi c mml mi mml mrow mml mrow mml mn 3 mml mn mml mrow mml msub mml mo class mathclass close mml mo mml mrow mml math
url http://mat76.mat.uni-miskolc.hu/mnotes/article/4666
work_keys_str_mv AT omerkusmus unitgroupofintegralgroupringmmlmathdisplayinlinemmlmrowmmlmizmmlmimmlmoclassmathclassopenmmlmommlmigmmlmimmlmoclassmathclassbinmmlmommlmsubmmlmrowmmlmicmmlmimmlmrowmmlmrowmmlmn3mmlmnmmlmrowmmlmsubmmlmoclassmathclassclosemmlmommlmrowmmlmath