pH-responsive nanovesicles capable of remodeling the tumor microenvironment enable activatable near-infrared-II fluorescence image-guided enhanced radiotherapy

Traditional radiotherapy (RT) lacks the precision to distinguish between tumor and normal tissues, leading to inevitable X-ray-induced side effects in patients. Therefore, it is crucial to develop integrated imaging and therapeutic modalities that can reduce side effects on surrounding healthy tissu...

Full description

Saved in:
Bibliographic Details
Main Authors: Lin Zhao, Mengzhen Wang, Yang Sun, Jinpeng Xu, Qinrui Fu, Wenjing Xiao
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:Materials Today Bio
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590006425002844
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traditional radiotherapy (RT) lacks the precision to distinguish between tumor and normal tissues, leading to inevitable X-ray-induced side effects in patients. Therefore, it is crucial to develop integrated imaging and therapeutic modalities that can reduce side effects on surrounding healthy tissues while enhancing susceptibility to tumor tissues. In this study, we developed a pH-responsive nanodrug (AuNRs-Mn3O4-Ag2S Ve) by self-assembling the second near-infrared (NIR-II, 950–1700 nm) fluorescent probe Ag2S quantum dots (QDs), multifunctional nanozyme Mn3O4 nanoparticles (NPs), and radiosensitizer gold nanorods (AuNRs) into a single nanoplatform via an emulsion process. This nanodrug enables precise tumor localization for accurately guided RT and multi-angle sensitization of RT. Upon intravenous administration, the nanodrug disintegrates in the tumor area due to the pH-sensitive polymer P4VP, releasing Ag2S QDs which are specifically activated by the acidic environment, thereby “turning on” the NIR-II fluorescence signal. The optimal timing of the NIR-II fluorescence signal within the tumor region after intravenous injection was investigated, providing a reference for guided RT. In vitro and in vivo experiments confirmed the efficient enhancement of tumor radiosensitization by AuNRs and Mn3O4 NPs. The specific imaging modality that transitions the fluorescence signal from “off” to “on” has been successfully implemented, addressing the limitations of conventional RT and enhancing radiosensitivity. The integration of imaging and therapeutic approaches in this study presents a promising modality for image-guided tumor RT.
ISSN:2590-0064