State of Charge Estimation in Batteries for Electric Vehicle Based on Levenberg–Marquardt Algorithm and Kalman Filter
A new optimization method for estimating the State of Charge (SOC) of battery charge state is proposed. This method incorporates the Levenberg–Marquardt Algorithm (LMA) for online parameter identification and the Extended Kalman Filter (EKF) for SOC. On the one hand, the LMA efficiently alleviates t...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-08-01
|
| Series: | World Electric Vehicle Journal |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2032-6653/15/9/391 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A new optimization method for estimating the State of Charge (SOC) of battery charge state is proposed. This method incorporates the Levenberg–Marquardt Algorithm (LMA) for online parameter identification and the Extended Kalman Filter (EKF) for SOC. On the one hand, the LMA efficiently alleviates the ’Data saturation’ problem experienced by least squares methods by dynamically adjusting weights of data. On the other hand, the EKF improves the robustness and adaptability of SOC estimation. Simulation results under Hybrid Pulse Power Characteristic (HPPC) conditions demonstrate that this new approach offers superior performance in SOC estimation in batteries for electric vehicles compared to existing methods, with better tracking of the true SOC curve, reduced estimation error, and improved convergence. |
|---|---|
| ISSN: | 2032-6653 |