Tunable Magnetic Heating in La<sub>0.51</sub>Sr<sub>0.49</sub>MnO<sub>3</sub> and La<sub>0.51</sub>Dy<sub>0.045</sub>Sr<sub>0.445</sub>MnO<sub>3</sub> Nanoparticles: Frequency- and Amplitude-Dependent Behavior

The use of perovskite manganite nanoparticles in magnetic hyperthermia has attracted significant attention due to their tunable magnetic properties and high specific absorption rate (SAR). In this work, we present a combined experimental and theoretical investigation of the frequency- and amplitude-...

Full description

Saved in:
Bibliographic Details
Main Authors: Mourad Smari, Monica Viorica Moisiuc, Mohammad Y. Al-Haik, Iordana Astefanoaei, Alexandru Stancu, Fedor Shelkovyi, Radel Gimaev, Julia Piashova, Vladimir Zverev, Yousef Haik
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/15/9/642
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850278650910343168
author Mourad Smari
Monica Viorica Moisiuc
Mohammad Y. Al-Haik
Iordana Astefanoaei
Alexandru Stancu
Fedor Shelkovyi
Radel Gimaev
Julia Piashova
Vladimir Zverev
Yousef Haik
author_facet Mourad Smari
Monica Viorica Moisiuc
Mohammad Y. Al-Haik
Iordana Astefanoaei
Alexandru Stancu
Fedor Shelkovyi
Radel Gimaev
Julia Piashova
Vladimir Zverev
Yousef Haik
author_sort Mourad Smari
collection DOAJ
description The use of perovskite manganite nanoparticles in magnetic hyperthermia has attracted significant attention due to their tunable magnetic properties and high specific absorption rate (SAR). In this work, we present a combined experimental and theoretical investigation of the frequency- and amplitude-dependent magnetic heating behavior of La<sub>0.51</sub>Sr<sub>0.49</sub>MnO<sub>3</sub> (LSMO) and Dy-doped La<sub>0.51</sub>Dy<sub>0.045</sub>Sr<sub>0.445</sub>MnO<sub>3</sub> (DLSMO) nanoparticles. The nanoparticles were synthesized via the sol–gel method and characterized by XRD and SEM, while SAR values were experimentally evaluated under varying magnetic field strengths (60–120 Oe) and frequencies (150–300 kHz). In parallel, theoretical modeling based on Néel and Brownian relaxation mechanisms was employed to predict SAR behavior as a function of particle size, magnetic anisotropy, and fluid viscosity. The results reveal that Dy doping enhances magnetic anisotropy, which modifies the relaxation dynamics and leads to a reduction in SAR. The model identifies the optimal nanoparticle size (~18–20 nm) and ferrofluid viscosity to maximize heating efficiency. This combined approach provides a comprehensive framework for designing and optimizing perovskite-based nanoparticles for magnetic hyperthermia applications.
format Article
id doaj-art-d35a788d643d4ccf973adb37a9c200e6
institution OA Journals
issn 2079-4991
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj-art-d35a788d643d4ccf973adb37a9c200e62025-08-20T01:49:24ZengMDPI AGNanomaterials2079-49912025-04-0115964210.3390/nano15090642Tunable Magnetic Heating in La<sub>0.51</sub>Sr<sub>0.49</sub>MnO<sub>3</sub> and La<sub>0.51</sub>Dy<sub>0.045</sub>Sr<sub>0.445</sub>MnO<sub>3</sub> Nanoparticles: Frequency- and Amplitude-Dependent BehaviorMourad Smari0Monica Viorica Moisiuc1Mohammad Y. Al-Haik2Iordana Astefanoaei3Alexandru Stancu4Fedor Shelkovyi5Radel Gimaev6Julia Piashova7Vladimir Zverev8Yousef Haik9Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab EmiratesFaculty of Physics, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, RomaniaDepartment of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab EmiratesFaculty of Physics, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, RomaniaFaculty of Physics, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, RomaniaFaculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gori, 119991 Moscow, RussiaFaculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, SloveniaFaculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gori, 119991 Moscow, RussiaFaculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gori, 119991 Moscow, RussiaDepartment of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab EmiratesThe use of perovskite manganite nanoparticles in magnetic hyperthermia has attracted significant attention due to their tunable magnetic properties and high specific absorption rate (SAR). In this work, we present a combined experimental and theoretical investigation of the frequency- and amplitude-dependent magnetic heating behavior of La<sub>0.51</sub>Sr<sub>0.49</sub>MnO<sub>3</sub> (LSMO) and Dy-doped La<sub>0.51</sub>Dy<sub>0.045</sub>Sr<sub>0.445</sub>MnO<sub>3</sub> (DLSMO) nanoparticles. The nanoparticles were synthesized via the sol–gel method and characterized by XRD and SEM, while SAR values were experimentally evaluated under varying magnetic field strengths (60–120 Oe) and frequencies (150–300 kHz). In parallel, theoretical modeling based on Néel and Brownian relaxation mechanisms was employed to predict SAR behavior as a function of particle size, magnetic anisotropy, and fluid viscosity. The results reveal that Dy doping enhances magnetic anisotropy, which modifies the relaxation dynamics and leads to a reduction in SAR. The model identifies the optimal nanoparticle size (~18–20 nm) and ferrofluid viscosity to maximize heating efficiency. This combined approach provides a comprehensive framework for designing and optimizing perovskite-based nanoparticles for magnetic hyperthermia applications.https://www.mdpi.com/2079-4991/15/9/642magnetic hyperthermiaperovskite manganite nanoparticlesspecific absorption rate (SAR)ferrofluid viscositynanoparticle heating efficiency
spellingShingle Mourad Smari
Monica Viorica Moisiuc
Mohammad Y. Al-Haik
Iordana Astefanoaei
Alexandru Stancu
Fedor Shelkovyi
Radel Gimaev
Julia Piashova
Vladimir Zverev
Yousef Haik
Tunable Magnetic Heating in La<sub>0.51</sub>Sr<sub>0.49</sub>MnO<sub>3</sub> and La<sub>0.51</sub>Dy<sub>0.045</sub>Sr<sub>0.445</sub>MnO<sub>3</sub> Nanoparticles: Frequency- and Amplitude-Dependent Behavior
Nanomaterials
magnetic hyperthermia
perovskite manganite nanoparticles
specific absorption rate (SAR)
ferrofluid viscosity
nanoparticle heating efficiency
title Tunable Magnetic Heating in La<sub>0.51</sub>Sr<sub>0.49</sub>MnO<sub>3</sub> and La<sub>0.51</sub>Dy<sub>0.045</sub>Sr<sub>0.445</sub>MnO<sub>3</sub> Nanoparticles: Frequency- and Amplitude-Dependent Behavior
title_full Tunable Magnetic Heating in La<sub>0.51</sub>Sr<sub>0.49</sub>MnO<sub>3</sub> and La<sub>0.51</sub>Dy<sub>0.045</sub>Sr<sub>0.445</sub>MnO<sub>3</sub> Nanoparticles: Frequency- and Amplitude-Dependent Behavior
title_fullStr Tunable Magnetic Heating in La<sub>0.51</sub>Sr<sub>0.49</sub>MnO<sub>3</sub> and La<sub>0.51</sub>Dy<sub>0.045</sub>Sr<sub>0.445</sub>MnO<sub>3</sub> Nanoparticles: Frequency- and Amplitude-Dependent Behavior
title_full_unstemmed Tunable Magnetic Heating in La<sub>0.51</sub>Sr<sub>0.49</sub>MnO<sub>3</sub> and La<sub>0.51</sub>Dy<sub>0.045</sub>Sr<sub>0.445</sub>MnO<sub>3</sub> Nanoparticles: Frequency- and Amplitude-Dependent Behavior
title_short Tunable Magnetic Heating in La<sub>0.51</sub>Sr<sub>0.49</sub>MnO<sub>3</sub> and La<sub>0.51</sub>Dy<sub>0.045</sub>Sr<sub>0.445</sub>MnO<sub>3</sub> Nanoparticles: Frequency- and Amplitude-Dependent Behavior
title_sort tunable magnetic heating in la sub 0 51 sub sr sub 0 49 sub mno sub 3 sub and la sub 0 51 sub dy sub 0 045 sub sr sub 0 445 sub mno sub 3 sub nanoparticles frequency and amplitude dependent behavior
topic magnetic hyperthermia
perovskite manganite nanoparticles
specific absorption rate (SAR)
ferrofluid viscosity
nanoparticle heating efficiency
url https://www.mdpi.com/2079-4991/15/9/642
work_keys_str_mv AT mouradsmari tunablemagneticheatinginlasub051subsrsub049submnosub3subandlasub051subdysub0045subsrsub0445submnosub3subnanoparticlesfrequencyandamplitudedependentbehavior
AT monicavioricamoisiuc tunablemagneticheatinginlasub051subsrsub049submnosub3subandlasub051subdysub0045subsrsub0445submnosub3subnanoparticlesfrequencyandamplitudedependentbehavior
AT mohammadyalhaik tunablemagneticheatinginlasub051subsrsub049submnosub3subandlasub051subdysub0045subsrsub0445submnosub3subnanoparticlesfrequencyandamplitudedependentbehavior
AT iordanaastefanoaei tunablemagneticheatinginlasub051subsrsub049submnosub3subandlasub051subdysub0045subsrsub0445submnosub3subnanoparticlesfrequencyandamplitudedependentbehavior
AT alexandrustancu tunablemagneticheatinginlasub051subsrsub049submnosub3subandlasub051subdysub0045subsrsub0445submnosub3subnanoparticlesfrequencyandamplitudedependentbehavior
AT fedorshelkovyi tunablemagneticheatinginlasub051subsrsub049submnosub3subandlasub051subdysub0045subsrsub0445submnosub3subnanoparticlesfrequencyandamplitudedependentbehavior
AT radelgimaev tunablemagneticheatinginlasub051subsrsub049submnosub3subandlasub051subdysub0045subsrsub0445submnosub3subnanoparticlesfrequencyandamplitudedependentbehavior
AT juliapiashova tunablemagneticheatinginlasub051subsrsub049submnosub3subandlasub051subdysub0045subsrsub0445submnosub3subnanoparticlesfrequencyandamplitudedependentbehavior
AT vladimirzverev tunablemagneticheatinginlasub051subsrsub049submnosub3subandlasub051subdysub0045subsrsub0445submnosub3subnanoparticlesfrequencyandamplitudedependentbehavior
AT yousefhaik tunablemagneticheatinginlasub051subsrsub049submnosub3subandlasub051subdysub0045subsrsub0445submnosub3subnanoparticlesfrequencyandamplitudedependentbehavior