Improving the Sound Source Identification Performance of Sparsity Constrained Deconvolution Beamforming Utilizing SFISTA

In this paper, an alternative sparsity constrained deconvolution beamforming utilizing the smoothing fast iterative shrinkage-thresholding algorithm (SFISTA) is proposed for sound source identification. Theoretical background and solving procedures are introduced. The influence of SFISTA regularizat...

Full description

Saved in:
Bibliographic Details
Main Authors: Linbang Shen, Zhigang Chu, Long Tan, Debing Chen, Fangbiao Ye
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2020/1482812
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832568174704328704
author Linbang Shen
Zhigang Chu
Long Tan
Debing Chen
Fangbiao Ye
author_facet Linbang Shen
Zhigang Chu
Long Tan
Debing Chen
Fangbiao Ye
author_sort Linbang Shen
collection DOAJ
description In this paper, an alternative sparsity constrained deconvolution beamforming utilizing the smoothing fast iterative shrinkage-thresholding algorithm (SFISTA) is proposed for sound source identification. Theoretical background and solving procedures are introduced. The influence of SFISTA regularization and smoothing parameters on the sound source identification performance is analyzed, and the recommended values of the parameters are obtained for the presented cases. Compared with the sparsity constrained deconvolution approach for the mapping of acoustic sources (SC-DAMAS) and the fast iterative shrinkage-thresholding algorithm (FISTA), the proposed SFISTA with appropriate regularization and smoothing parameters has faster convergence speed, higher quantification accuracy and computational efficiency, and more insensitivity to measurement noise.
format Article
id doaj-art-d32890b40df34d5288bb1d377dfc6064
institution Kabale University
issn 1070-9622
1875-9203
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series Shock and Vibration
spelling doaj-art-d32890b40df34d5288bb1d377dfc60642025-02-03T00:59:42ZengWileyShock and Vibration1070-96221875-92032020-01-01202010.1155/2020/14828121482812Improving the Sound Source Identification Performance of Sparsity Constrained Deconvolution Beamforming Utilizing SFISTALinbang Shen0Zhigang Chu1Long Tan2Debing Chen3Fangbiao Ye4School of Automotive Engineering, Chongqing University, Chongqing 400044, ChinaSchool of Automotive Engineering, Chongqing University, Chongqing 400044, ChinaChongqing Vehicle Test & Research Institute Co., Ltd., Chongqing 401120, ChinaChongqing Vehicle Test & Research Institute Co., Ltd., Chongqing 401120, ChinaChongqing Vehicle Test & Research Institute Co., Ltd., Chongqing 401120, ChinaIn this paper, an alternative sparsity constrained deconvolution beamforming utilizing the smoothing fast iterative shrinkage-thresholding algorithm (SFISTA) is proposed for sound source identification. Theoretical background and solving procedures are introduced. The influence of SFISTA regularization and smoothing parameters on the sound source identification performance is analyzed, and the recommended values of the parameters are obtained for the presented cases. Compared with the sparsity constrained deconvolution approach for the mapping of acoustic sources (SC-DAMAS) and the fast iterative shrinkage-thresholding algorithm (FISTA), the proposed SFISTA with appropriate regularization and smoothing parameters has faster convergence speed, higher quantification accuracy and computational efficiency, and more insensitivity to measurement noise.http://dx.doi.org/10.1155/2020/1482812
spellingShingle Linbang Shen
Zhigang Chu
Long Tan
Debing Chen
Fangbiao Ye
Improving the Sound Source Identification Performance of Sparsity Constrained Deconvolution Beamforming Utilizing SFISTA
Shock and Vibration
title Improving the Sound Source Identification Performance of Sparsity Constrained Deconvolution Beamforming Utilizing SFISTA
title_full Improving the Sound Source Identification Performance of Sparsity Constrained Deconvolution Beamforming Utilizing SFISTA
title_fullStr Improving the Sound Source Identification Performance of Sparsity Constrained Deconvolution Beamforming Utilizing SFISTA
title_full_unstemmed Improving the Sound Source Identification Performance of Sparsity Constrained Deconvolution Beamforming Utilizing SFISTA
title_short Improving the Sound Source Identification Performance of Sparsity Constrained Deconvolution Beamforming Utilizing SFISTA
title_sort improving the sound source identification performance of sparsity constrained deconvolution beamforming utilizing sfista
url http://dx.doi.org/10.1155/2020/1482812
work_keys_str_mv AT linbangshen improvingthesoundsourceidentificationperformanceofsparsityconstraineddeconvolutionbeamformingutilizingsfista
AT zhigangchu improvingthesoundsourceidentificationperformanceofsparsityconstraineddeconvolutionbeamformingutilizingsfista
AT longtan improvingthesoundsourceidentificationperformanceofsparsityconstraineddeconvolutionbeamformingutilizingsfista
AT debingchen improvingthesoundsourceidentificationperformanceofsparsityconstraineddeconvolutionbeamformingutilizingsfista
AT fangbiaoye improvingthesoundsourceidentificationperformanceofsparsityconstraineddeconvolutionbeamformingutilizingsfista